Final Exam Solutions

1. Initialization.

Don't forget to do this.

2. Memory.

$\sim 48n$ bytes

Each Node object requires 48 bytes: object overhead (16 bytes), 3 references (24 bytes), char (2 bytes), int (4 bytes), padding (2 bytes).

3. Running time.

EDDDE

4. String sorts.

- A Original input
- C MSD radix sort after the second call to key-indexed counting
- D 3-way radix quicksort after the first partitioning step
- C MSD radix sort after the first call to key-indexed counting
- B LSD radix sort after 1 pass
- D 3-way radix quicksort after the second partitioning step
- \mathbf{E} Sorted

5. Depth-first search.

- (a) $0\ 2\ 1\ 7\ 6\ 8\ 4\ 5\ 3\ 9$
- (b) 1 6 8 7 2 9 3 5 4 0
- (c) Explanation 1: There cannot be a topological order because of the directed cycle $5 \rightarrow 3 \rightarrow 9 \rightarrow 5$.

Explanation 2: If G were a DAG, then we know that the reverse postorder would be a topological order. However, the reverse of the postorder from (b) is not a topological order (e.g., because 5 appears before 9 in the reverse postorder but $9 \rightarrow 5$ is an edge).

6. Breadth-first search.

 $0\;4\;8\;5\;9\;2\;3\;1\;7\;6$

7. Maximum flow.

- (a) 50 = 9 + 3 + 38
- (b) 78 = 29 + 12 + 37
- (c) $A \to B \to C \to H \to I \to D \to J$
- (d) 5
- (e) The unique mincut is $\{A, B, C, F, G\}$.

8. LZW compression.

(a) C A A C A B C A B A

	i	codeword
	81	CA
	82	AA
(b)	83	\mathbf{AC}
	84	CAB
	85	BC
	86	CABA

9. Ternary search tries.

TIGER, TO, TOO, TRIE

10. Knuth-Morris-Pratt substring search.

	0	1	2	3	4	5	6	7
А	0	0	3	0	0	6	0	0
В	0	0	0	0	0	0	0	8
С	1	2	2	4	5	2	7	5
s	С	С	А	С	С	А	С	В

11. Programming assignments.

(d) Percolation, WordNet, SeamCarving

12. Properties of minimum spanning trees. A C C A C

- 13. Properties of shortest paths. B C A D C
- 14. Regular expressions.
 - (a) $(A^* | (AB^*A)+)$
 - (b) $1 \ 2 \ 3 \ 6 \ 7 \ 8 \ 11 \ 12$

15. Shortest discount path.

Use the graph-doubling trick (ala SHORTEST-PRINCETON-PATH from the Spring 2015 Final) and create a digraph G' with 2V vertices and 3E edges as follows:

- For each vertex v in G: create two vertices v and v'.
- For each edge $v \to w$ in G: create the three edges $v \to w$, $v' \to w'$, and $v \to w'$. The weight of $v \to w$ and $v' \to w'$ equals the weight of e; the weight of $v \to w'$ is one-half that weight.

A shortest path from s to t' corresponds to a shortest discount path: the one edge in the path going from the first copy of the digraph to the second copy corresponds to the discounted edge.

16. Substring of a circular string.

Let u denote the string containing the first m + n characters of the (infinite) circular string t. Do a substring search of the query string s in the text string u. If we use Knuth–Morris–Pratt, the overall running time will be proportional to m + n in the worst case (m to build the DFA and m + n to simulate it on string u).

Here are two examples, one with m < n and one with m > n:

- s = BBAABBAABBAABB, t = ABBA, m = 14, n = 4. Search for the query string s = BBAABBAABBAABB in the text string u = ABBAABBAABBAABBAABBAA.

Note 1: Two copies of t is not enough when m >> n; $\lceil m/n \rceil$ copies of t is not enough when m < n.

Note 2: It simplest to form the string u explicitly, but you can also run Knuth-Morris-Pratt on u implicitly by building the DFA for s and simulating it on t, wrapping around to the beginning of t after you reach the end of t. In this case, you need to be careful about when to stop the simulation if no match is found: m + n DFA transitions suffice.