
COS 426: Computer Graphics (Spring 2022)

Henry Wang, Edward Yang

Finishing Up Assignment 3:
Raytracing II

Agenda

● Lighting
○ Hard Shadows
○ Soft Shadows
○ Transmission

● Materials
○ Checkerboard
○ Phong
○ Natural Textures

■ Perlin Noise
■ Procedural Generation

● Advanced Path Tracing

Hard Shadows

● Points should not sample the contribution from a light
that they cannot “see”

● First cast a ray from the intersection point to the light
in question (use rayIntersectScene) and determine
the length of this shadow ray

● If this distance is “more than a little less” than the
distance between the intersection point and the light,
the point is in shadow.

Hard Shadows

Soft Shadows

● Lights in real life aren’t “points”
● Certain spots can now see

fractional portions of a light
● This creates shaded areas

(penumbra) around shadows
(umbra)
○ Penumbra = paene + umbra

(almost + shadow)
○ Just like “peninsula”

Soft Shadows

● For soft shadows in A3, pretend each light is actually a
spherical orb of some radius (you can tune this
parameter)

● Cast multiple shadow rays per light from points
sampled on the light’s surface. Return the estimated
fractional contribution of the light (proportion of
shadow rays that made it to the light)

Soft Shadows: Sampling

● In raytracing, uniform sampling a grid is
almost always bad
○ It creates grid-like visual artifacts
○ This applies to more than soft shadows

● Instead, randomly sample the grid by
applying jitter (a random offset) to each
point
○ Better than “just random points” because

more even distribution
○ Therefore, faster convergence to correct

(non-noisy) value!

Soft Shadows: Sampling

● For A3, you’ll need to sample points on a spherical shell
● Be careful about how you parameterize the surface

○ Let’s try spherical coordinates and sampling θ [0, 2π) and ϕ [0, π)
○ This is not good!

Soft Shadows: Sampling

● For A3, you’ll need to sample points on a spherical shell
● Be careful about how you parameterize the surface

○ Let’s try sampling by solid angle
○ Yay! It’s even!

Soft Shadows: Sampling

● First split the unit area [0, 1) x [0, 1) into an N x N grid, where N is the
square root of the number of samples you want to make

● For the (minX, minY) of each tile (uniform sampling offset into corner)
● Apply jitter by offsetting the corner position by 1/(N) in the x and y

directions, independently (stratified random sampling)
○ 1/N is the width and height of each grid tile, so this random position falls

anywhere within the tile with uniform probability
● Map each random sample in [0, 1] x [0, 1] to the space you want to

sample.

Soft Shadows: Sampling

● For point picking on a sphere using two samples drawn from
[0, 1) x [0, 1) uniformly at random:
○ Map x to θ ∈ [0, 2π)
○ Map y to u ∈ [-1, 1)
○ sample = (sqrt(1 - u2)cos(θ), sqrt(1 - u2)sin(θ), u)

Soft Shadows

Transmission

● Transparent materials like glass refract light
● When light passes from one refractive medium to another, the

angle of refraction is determined by the ratio of the refractive
indices between the media

● Use Snell’s law to compute the direction of the outgoing ray

Transmission

● In reality, most transmissive materials also reflect light, as determined
by the Fresnel equations from E&M
○ Hard to compute, so industry path-tracers tend to use Schlick’s

approximation to estimate the T/R ratio
○ Don’t worry about this for A3, unless you want to go the distance!

● At some point, Snell’s law will break down because it is impossible to
take an arcsin of a value greater than one. This threshold is the critical
angle

● Angles at or above the critical angle cause
total internal reflection.
○ You will need to handle this
○ Return a mirror bounce!

Checkerboard

● Given your intersection point,
quantize it to the unit grid, and then
scale the result (optional).
○ Might need to add eps to the

intersection point to prevent
speckeling

● Depending on the parity of its x, y, z
coords summed up, choose a color!

● Result should look like a 3D chess
board

Phong Reflectance Model

● Many non-reflective surfaces still reflect concentrated
blobs of light, known as specular highlights

● The Phong reflectance model approximates this look
○ Physically motivated, but not physically accurate (doesn’t

conserve energy!)

Natural Textures

● How can we use randomness to procedurally
generate natural textures?

● Uniform randomness doesn’t look good
○ Too machine-like

● Key insight: the scale of artifacts due to the
randomness should be locally similar

Perlin Noise

● Developed by Ken Perlin;
won an academy award
○ Used in video games

and CGI for natural
textures

○ Used to help generate
procedural landscapes

○ Now belongs to a class
of type of gradient
noise functions

Perlin Noise

● Key idea:
○ First generate

random points
○ Then smoothly

interpolate (fade)
between the points

Perlin Noise

● For a 2D point:
○ Cut to grids

■ Scale this as needed to adjust
sampling frequency

○ Assign each grid vertex a random
gradient vector from:

○ The random selection should be
determined by grid vertex position

Perlin Noise

● For a 2D point (continued):
○ Find distance vectors for each

grid vertex (w.r.t. the point being
sampled)

○ Dot distance vectors for a given
vertex with the vertex’s gradient

○ Interpolate results (think bilinear
sampling), but run the normal
“linear” alpha through the fade
function:
■ αnew = 6αold

5 – 15αold
4 + 10αold

3

Perlin Noise

● Result (with gradients and grid visualized):

Procedural Generation

● Now let’s try to procedurally generate a mountain
range!

● Does this Perlin noise look like a mountain range?

Procedural Generation

● Does this Perlin noise look like a mountain range?

● No!
● A real landscape is like a fractal, with details as large as

mountains to as small as gravel

Procedural Generation

● Key idea: add up our Perlin noise sampled for different
levels (called octaves)

● High frequency info (like rocks and pebbles) should
have low amplitudes (small height)

● Low frequency info (like mountains and valleys) should
have high amplitudes (large height)

Procedural Generation

● As an example, here are some samples at different
octaves:

Procedural Generation

● And here is the result:

Procedural Generation

● We have now created fractional Brownian Motion (or
fractal Brownian motion), abbreviated as fBM

● Brownian motion is a random walk where the direction
of your next step is independent of every other step

● fBM is similar, but your next step can be correlated or
anticorrelated to your previous step

Procedural Generation

● fBM correlation is determined by the Hurst Exponent,
H, which takes values between 0 and 1.
○ H = 0: volatile (anticorrelated)
○ H = ½: Brownian motion (uncorrelated)
○ H = 1: smooth (correlated)

● For efficiency, fBM usually uses gain, G = 2-2H

○ Thus, G ranges between .5 (smooth) and 1 (rough)
○ Also called persistence

● Read more here:
○ http://www.iquilezles.org/www/articles/fbm/fbm.htm

// pseudocode

Procedural Generation

● Fractal Brownian Motion
● Lacunarity affects

how quickly our
frequency increases

● We can use any
smooth noise
function!
○ Often cheaper or

more advanced
noise alternative
to Perlin is used

// Properties
const int octaves = 8;
float lacunarity = 2.0; // How quickly width shrinks
float gain = 0.5; // How slowly height shrinks

// Initial values
float amplitude = 0.5;
float frequency = 1.;

// Loop of octaves
for (int i = 0; i < octaves; i++) {

y += amplitude * noise(frequency*x);
frequency *= lacunarity;
amplitude *= gain;

}

Procedural Generation

● Example of fractal behavior:

Procedural Generation

● A fractal Brownian motion texture:
○ f(p) = fbm(p)

Procedural Generation

● We can even compose
our fbm functions:
○ g(p) = fbm(p + fbm(p))

○ h(p) = fbm(p +g(p))

Procedural Generation

● And we can add color!

Procedural Generation

● And we can add color!

Procedural Generation

● And we can animate it:
○ For more, check out: http://www.iquilezles.org/www/articles/warp/warp.htm

http://www.youtube.com/watch?v=If1flV_o7mk

Procedural Generation

● Back to the original question: how about landscapes?
● Here are two real mountainous landscapes:

● Signal analysis shows they correspond to fbm with a
gain of 0.5 (smooth)

Procedural Generation

● All the terrain, clouds, trees, coloring, and canopy details in this image
were procedurally generated using fBM in real time

Advanced Path Tracing

● Our simple raytracer for A3 leaves out many real behaviors of light:
○ No visible lights with realistic geometries
○ No indirect illumination

■ No global illum. and no caustics (light focused by refraction)
○ No distributed/monte carlo path-tracing

■ No natural looking materials; no blurry reflections/refractions
○ Poor BRDF (bidirectional reflectance distribution function)

■ Reflections aren’t physically based; materials all look plasticy
○ No sub-surface scattering (ray bounces under and out of the surface)

■ This is what makes velvet look like velvet; same for skin
○ No volumes like water or smoke
○ No camera effects like motion blur or depth of field

Advanced Path Tracing

● It would be infeasible to cover the last 20 years of path tracing in
this slide deck but these two papers from Disney/Pixar are
incredible. Between these papers and their references, you could
probably build a super advanced path tracer on your own:
○ History of path tracing and path tracing today
○ Disney BSDF (BRDF + surface properties)
○ Disney BSDF coding walkthough

● Today, films are finishing up the shift to single-pass path tracing
as the default rendering technique

https://graphics.pixar.com/library/PathTracedMovies/paper.pdf
https://blog.selfshadow.com/publications/s2015-shading-course/burley/s2015_pbs_disney_bsdf_notes.pdf
https://schuttejoe.github.io/post/disneybsdf/

Advanced Path Tracing

● Advanced single-pass path-tracer in a nutshell:
○ Until convergence:

■ Trace a ray from the camera
■ Evaluate the surface contribution at the intersection
■ Play russian roulette: if lose, kill the ray (base case)
■ Otherwise, randomly sample the BSDF (bidirectional

scattering distribution function) for a bounced ray, and
recur on that ray

■ Add the weighted contribution from that bounce

Advanced Path Tracing

● COS 526: Advanced
Computer Graphics will take
you up to here

● Note:
○ Fresnel effects!
○ Glossy reflection!
○ Global illumination

(uses photon mapping)
○ Caustics!

● Unfortunately not planned
for Fall 2022. :(

