Finishing Up Assignment 1: Image Processing

COS 426: Computer Graphics (Spring 2022)

Picking up where we left off last week...

Luminance

- Brightness
- Contrast
- Gamma
- Vignette
- Histogram equalization

Color

- Grayscale
- Saturation
- White balance
- Histogram matching

Filter

- Gaussian
- Sharpen
- Edge detect
- Median
- Bilateral filter

Dithering

- Quantization
- Random dithering
- Floyd-Steinberg error diffusion
- Ordered dithering

Resampling

- Bilinear sampling
- Gaussian sampling
- Translate
- Scale
- Rotate
- Swirl

Composite

- Composite
- Morph

A Familiar Pattern

Notice anything familiar about the pattern?

Why Dither?

It's a Floyd-Steinberg dither over RGB channels (1 bit each)!

This filter was often used to compress web GIFs - look for the artifact in old-school animations!

Transformation (translate/scale/rotate/swirl)

- Inverse mapping

input

Inverse mapping guarantees that every pixel in the transformed image is filled!

Transformation (translate/scale/rotate/swirl)

- To fill in a pixel in the target image, apply the inverse transform to the pixel location and look it up in the input image (with resampling technique) for pixel value.
- i.e. For translation of $x^{\prime}=x+t x, y^{\prime}=y+t y:$

$$
I^{\prime}\left(x^{\prime}, y^{\prime}\right)=I\left(x^{\prime}-t x, y^{\prime}-t y\right)
$$

- i.e. For scale of $x^{\prime}=x^{*} s x, y^{\prime}=y^{*}$ sy:
$l^{\prime}\left(x^{\prime}, y^{\prime}\right)=I\left(x^{\prime} / s x, y^{\prime} / s y\right)$

Composite

- output = alpha * foreground + (1-alpha) * background
- alpha is the alpha channel foreground

backgroundImg

foregroundImg

foregroundImg(alpha channel)

Result

Morph

- Basic concepts
- transform the background image to the foreground image
- alpha $=0$: show background
- alpha = 1 : show foreground
- alpha is the blending factor / timestamp
- General approach
- specify correspondences (morphLines.html)
- create an intermediate image with interpolated correspondences (alpha)
- warp the background image to the intermediate correspondence
- warp the foreground image to the intermediate correspondence
- blend using alpha

Interpolate Morph Lines

Background Image

Foreground Image
current_line[i] = (1 - alpha) * background_lines[i] + alpha * foreground_lines[i]

Morph Algorithm Overview

1. Warp for a single line pair
2. Warp for many line pairs
3. For a fixed t, define the current line pairs as an interpolation between initial and final lines
4. Warp initial image I to intermediate I ' and final image F to intermediate F ' using current line pairs from Step 3
5. Alpha blend I^{\prime} and F^{\prime} using t
6. Vary t to get a morphing animation

Warp Image (Single Line)

Warped background or foreground (currently undefined)

Pixel source (background or foreground)

Warp Image (Single Line)

Let S be the projection point of X onto PQ
$u=$ fraction of SP's signed length over PQ's absolute length
$\mathrm{v}=\mathrm{X}$'s signed distance to $P Q$, or to say, signed length of SX

Warp Image (Single Line)

${ }^{\text {scalar }} \cdot \mathbf{u}=\frac{(X-P) \cdot(Q-P)}{\|Q-P\| \|^{2}}=$ Projection of PX onto PQ
scalar $\quad(X-P) \cdot$ Perpendicular $(Q-P)$ If $\mathrm{Q}-\mathrm{P}=(\mathrm{x}, \mathrm{y})$,
$\cdot v=\frac{(X-P) \cdot P e r p e n d i c u l a r(Q-P)}{\|Q-P\|}$ unit vector

- $X^{\prime}=P^{\prime}+u \cdot\left(Q^{\prime}-P^{\prime}\right)+\frac{v \cdot P e r p e n d i c u l a r\left(Q^{\prime}-P^{\prime}\right)}{\left\|Q^{\prime}-P^{\prime}\right\|}$

Perpendicular $(Q-P)=(y,-x)$
unit vector
$S^{\prime}=P^{\prime}+u^{*}\left(Q^{\prime}-P^{\prime}\right)$

Want to map X in destination image to unknown pixel X^{\prime} in source image which contains current line

Warp Image (Single Line)

scalar $u=\frac{(X-P) \cdot(Q-P)}{\|Q-P\| \|^{2}}=$ Projection of PX onto PQ
scalar $v=\frac{(X-P) \cdot P \text { Perpendicular }(Q-P)}{\|Q-P\|}$ unit vector

- $X^{\prime}=P^{\prime}+u \cdot\left(Q^{\prime}-P^{\prime}\right)+\frac{v \cdot P e r p e n d i c u l a r ~}{}\left(Q^{\prime}-P^{\prime}\right)$

If $Q-P=(x, y)$,
Perpendicular $(Q-P)=(y,-x)$

unit vector

Want to map X in destination image to unknown pixel
X^{\prime} in source image which contains current line

Warp Image (Single Line)

dist $=$ shortest distance from X to $P Q$

- $0<=u<=1$: dist $=|v|$
- $u<0$: dist $=\| X-P| |$
- $u>1$: dist = ||X-Q||

Warp Image (Many Lines)

For each pixel \boldsymbol{X} in the destination
$\boldsymbol{D S U M}=(0,0)$
weightsum $=0$ Track total weight for later averaging

For each line $\boldsymbol{P}_{i} \boldsymbol{Q}_{\boldsymbol{i}}$
calculate u, v based on $P_{i} Q_{i}$ calculate $X_{i}^{\prime}{ }_{i}$ based on $\boldsymbol{u}, \boldsymbol{v}$ and $P_{i}{ }^{\prime} Q_{i}{ }^{\prime}$ calculate displacement $\boldsymbol{D}_{\boldsymbol{i}}=\boldsymbol{X}_{\boldsymbol{i}}{ }^{\prime}-\boldsymbol{X}_{\boldsymbol{i}}$ for this line dist $=$ shortest distance from X to $P_{i} \boldsymbol{Q}_{i}$
weight $=\left(\text { length }^{p} /(a+\text { dist })\right)^{b}$
DSUM $+=D_{i}$ * weight
weightsum $+=$ weight
$\boldsymbol{X}^{\prime}=\boldsymbol{X}+\boldsymbol{D S U M} /$ weightsum Repeat for all lines and then average based on weight destinationImage $(\boldsymbol{X})=$ sourceImage $\left(\boldsymbol{X}^{\prime}\right)$

Blending

Blending

Vary this alpha to get an animation

$$
\text { alpha }=0.5 \text { (also the blending factor) }
$$

[^0]

Foreground Image

Morph Algorithm Sketch

GenerateAnimation(Image $_{0}, L_{0}[\ldots]$, Image $\left._{1}, L_{1}[\ldots]\right)$ begin
foreach intermediate frame time t do for $i=0$ to number of line pairs do
$L[i]=$ line t-th of the way from $L_{0}[i]$ to $L_{1}[i]$ end
Warp $_{0}=$ WarpImage $^{\text {Image }}{ }_{0}, L_{0}, L$) Warp $_{1}=$ WarpImage $^{\left(\text {Image }_{1}, L_{1}, L\right)}$ foreach pixel p in Finallmage do

Result $(\mathrm{p})=(1-\mathrm{t}) \mathrm{Warp}_{0}+\mathrm{t} \mathrm{Warp}_{1}$ end
end
end

Q\&A

[^0]: Background Image

