Subdivision Surfaces

COS 426, Spring 2022
Felix Heide
Princeton University
3D Object Representations

- Raw data
 - Range image
 - Point cloud

- Surfaces
 - Polygonal mesh
 - Parametric
 - Subdivision
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Application specific
Subdivision Surfaces

• Alternative to parametric surfaces, overcoming:
 • Many patches
 • Difficult to mark sharp features
 • Irregularities after deformation

Woody’s hand (NURBS) Geri’s hand (subdivision)

Stanford Graphics course notes
Geri’s Game

• “served as a demonstration of a new animation tool called subdivision surfaces” (Wikipedia)

• Subdivision used for head, hands & clothing

• Academy Award winner
Subdivision Surfaces

- Used in movie and game industries
- Supported by most 3D modeling software
Subdivision Surfaces

- What makes a good surface representation?
 - Accurate
 - Concise
 - Intuitive specification
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed continuity
 - Natural parameterization
 - Efficient display
 - Efficient intersections

Reif & Schroeder 2000
Review on Continuity

A curve / surface with G^k continuity has a continuous k-th derivative, geometrically.

No continuity (G$^{-1}$?)

Similar to (but not the same as) C^k continuity, which refers to continuity with respect to parameter
e.g.: $f_x(u) = r_x \cos(2u)$ (but we’re going to say C^k from now on...)

G^0

G^1

G^2
Subdivision

• How do you make a curve with guaranteed continuity?
Subdivision

- How do you make a curve with guaranteed continuity? …
Subdivision

• How do you make a surface with guaranteed continuity?
Subdivision Surfaces

- Repeated application of
 1. Topology refinement (splitting faces)
 2. Geometry refinement (weighted averaging)

Zorin & Schroeder
SIGGRAPH 99
Course Notes
Subdivision Surfaces – Examples

- Base mesh
Subdivision Surfaces – Examples

- Topology refinement
Subdivision Surfaces – Examples

- Geometry refinement
Subdivision Surfaces – Examples

• Topology refinement
Subdivision Surfaces – Examples

• Geometry refinement
Subdivision Surfaces – Examples

- Topology refinement
Subdivision Surfaces – Examples

- Geometry refinement
Subdivision Surfaces – Examples

• Limit surface
Subdivision Surfaces – Examples

• Base mesh + limit surface
Design of Subdivision Rules

• What types of input?
 • Quad meshes, triangle meshes, etc.

• How to refine topology?
 • Simple implementations

• How to refine geometry?
 • Smoothness guarantees in limit surface
 » Continuity (C^0, C^1, C^2, …?)
 • Provable relationships between limit surface and original control mesh
 » Interpolation of vertices?
 » Surface within their convex hull?
Linear Subdivision

• Type of input
 • Quad mesh -- four-sided polygons (*quads*)

• Topology refinement rule
 • Split every quad into four at midpoints

• Geometry refinement rule
 • Average vertex positions

Note: simple example to demonstrate how such schemes work, but not the best scheme…
Linear Subdivision
Linear Subdivision

- Topology refinement
Linear Subdivision

- Geometry refinement
Linear Subdivision

LinearSubivision \((F_0, V_0, k)\)

for \(i = 1 \ldots k\) levels

\((F_i, V_i) = \text{RefineTopology}(F_{i-1}, V_{i-1})\)

RefineGeometry\((F_i, V_i)\)

return \((F_k, V_k)\)
Linear Subdivision

RefineTopology \((F, V)\)

new\(V = V\)

new\(F = {}\)

for each face \(F_i\)

Insert new vertex \(c\) at centroid of \(F_i\) into new\(V\)

return \((\text{new}F, \text{new}V)\)
Linear Subdivision

RefineTopology \((F, V)\)

\[newV = V \]

\[newF = \{ \} \]

for each face \(F_i\)

Insert new vertex \(c\) at centroid of \(F_i\) into \(newV\)

for \(j = 1\) to \(4\)

Insert in \(newV\) new vertex \(e_j\) at centroid of each edge \((F_{i,j}, F_{i,j+1})\)

return \((newF, newV)\)
Linear Subdivision

RefineTopology \((F, V) \)

\[\text{newV} = V \]

\[\text{newF} = \{\} \]

for each face \(F_i \)

Insert new vertex \(c \) at centroid of \(F_i \) into \(\text{newV} \)

for \(j = 1 \) to \(4 \)

Insert in \(\text{newV} \) new vertex \(e_j \) at centroid of each edge \((F_{i,j}, F_{i,j+1}) \)

for \(j = 1 \) to \(4 \)

Insert new face \((F_{i,j}, e_j, c, e_{j-1}) \) into \(\text{newF} \)

return \((\text{newF}, \text{newV}) \)
Linear Subdivision

RefineGeometry(\(F, V \))

\[newV = V \]
\[newF = F \]

for each vertex \(V_i \) in \(newV \)

\[weight = 0; \]
\[newV[i] = (0,0,0) \]

return \((newF, newV) \)
Linear Subdivision

RefineGeometry(F, V)

\[newV = V \]
\[newF = F \]

for each vertex \(V_i \) in newV

\[\text{weight} = 0; \]
\[newV[i] = (0,0,0) \]

for each face \(F_j \) connected to \(V_i \)

\[newV[i] += \text{centroid of } F_j \]
\[\text{weight} += 1.0; \]

\[newV[i] /= \text{weight} \]

return \((newF, newV)\)
Linear Subdivision

- Example

Input mesh
Linear Subdivision

- Example

Topology refinement
Linear Subdivision

• Example
Linear Subdivision

• Example

Topology refinement
Linear Subdivision

• Example

Geometry refinement
Linear Subdivision

• Example

Topology refinement
Linear Subdivision

• Example

Geometry refinement
Linear Subdivision

- Example

Topology refinement

Scott Schaefer
Linear Subdivision

• Example

Final result
Subdivision Demo

https://threejs.org/examples/webgl_modifier_subdivision.html
Subdivision Schemes

- Common subdivision schemes
 - Catmull-Clark
 - Loop
 - Many others

- Differ in ...
 - Input topology
 - How refine topology
 - How refine geometry

... which makes differences in ...
- Provable properties
Catmull-Clark Subdivision

Scott Schaefer
Catmull-Clark Subdivision
Catmull-Clark Subdivision

Scott Schaefer
Catmull-Clark Subdivision

Scott Schaefer
Catmull-Clark Subdivision
Catmull-Clark Subdivision

New \cdot = (\cdot - \cdot + (n-3) \cdot) / n

n = \#faces a point belongs to.

Scott Schaefer
Catmull-Clark Subdivision

New \bullet = (-1 \cdot \text{avg of } \bullet + (n-3) \cdot \bullet) / n

\[n = \# \text{faces a point belongs to}. \]
Catmull-Clark Subdivision

New \textcolor{green}{\bullet} = \left(4 \times \text{avg of } \textcolor{blue}{\bullet} - 1 \times \text{avg of } \textcolor{red}{\bullet} + (n-3) \times \textcolor{green}{\bullet}\right) / n

n = \#faces a point belongs to.

Scott Schaefer
Catmull-Clark Subdivision

Scott Schaefer
Catmull-Clark Subdivision
Catmull-Clark Subdivision

Scott Schaefer
Catmull-Clark Subdivision

Linear Subdivision Catmull-Clark Subdivision

Scott Schaefer
Catmull-Clark Subdivision

Scott Schaefer
Catmull-Clark Subdivision
Catmull-Clark Subdivision

Scott Schaefer
Catmull-Clark Subdivision
Catmull-Clark Subdivision

- One round of subdivision produces all quads
- Smoothness of limit surface
 - C^2 almost everywhere
 - C^1 at vertices with valence $\neq 4$
- Relationship to control mesh
 - Does not interpolate input vertices
 - Within convex hull
- Most commonly used subdivision scheme in the movies…
Subdivision Schemes

• Common subdivision schemes
 • Catmull-Clark
 ➢ Loop
 • Many others

• Differ in ...
 • Input topology
 • How refine topology
 • How refine geometry

... which makes differences in ...
 • Provable properties
Loop Subdivision

- Operates on pure triangle meshes
- Subdivision rules
 - Linear subdivision
 - Averaging rules for “even / odd” (white / black) vertices

Zorin & Schroeder
SIGGRAPH 99
Course Notes
Loop Subdivision

- Operates on pure triangle meshes
- Subdivision rules
 - Linear subdivision
 - Averaging rules for “even / odd” (white / black) vertices
Loop Subdivision

Averaging rules

- Weights for “odd” and “even” vertices

Odd:

\[
\begin{align*}
\frac{1}{8} & \\
\frac{3}{8} & \\
\frac{3}{8} & \\
\frac{1}{8} &
\end{align*}
\]

… but what about vertices with valence ≠ 6?
Loop Subdivision

Averaging rules

- Weights for “odd” and “even” vertices

Odd:

$$\frac{3}{8} \quad \frac{1}{8}$$

Even:

$$\frac{3}{8} \quad \frac{1}{16} \quad \frac{10}{16} \quad \frac{1}{16}$$

… but what about vertices with valence ≠ 6?
Loop Subdivision

- Rules for *extraordinary vertices and boundaries*:

Odd:

\[
\begin{array}{c}
\frac{1}{8} \\
\frac{3}{8} \\
\frac{1}{8} \\
\frac{3}{8}
\end{array}
\]

\[
\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}
\end{array}
\]

Interior

Crease and boundary

\[a. \text{ Masks for odd vertices}\]
Loop Subdivision

• Rules for *extraordinary vertices and boundaries*:

Odd:

Even:

\[\frac{1}{8} \]

\[\frac{3}{8} \]

\[\frac{1}{8} \]

\[\frac{3}{8} \]

\[\beta \]

\[1-k\beta \]

\[\beta \]

\[\frac{1}{8} \]

\[\frac{3}{4} \]

\[\frac{1}{8} \]

\[\frac{1}{2} \]

\[\frac{1}{2} \]

\[a. \text{ Masks for odd vertices} \]

\[b. \text{ Masks for even vertices} \]
Loop Subdivision

• How to choose β?
 • Analyze properties of limit surface
 • Interested in continuity of surface and smoothness

 » Original Loop

 $$\beta = \frac{1}{n} \left(\frac{5}{8} - \left(\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{n} \right)^2 \right)$$

 » Warren

 $$\beta = \begin{cases}
 \frac{3}{8n} & n > 3 \\
 \frac{3}{16} & n = 3
 \end{cases}$$
Loop Subdivision

• Operates only on triangle meshes
• Smoothness of limit surface
 • C^2 almost everywhere
 • C^1 at vertices with valence $\neq 6$
• Relationship to control mesh
 • Does not interpolate input vertices
 • Within convex hull
Subdivision Schemes

- Common subdivision schemes
 - Catmull-Clark
 - Loop
 - Many others

- Differ in ...
 - Input topology
 - How refine topology
 - How refine geometry

… which makes differences in ...
 - Provable properties
Subdivision Zoo

- **Other subdivision schemes**

<table>
<thead>
<tr>
<th>Primal (face split)</th>
<th>Quad Meshes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangular meshes</td>
<td>Catmull-Clark(C^2)</td>
</tr>
<tr>
<td>Approximating</td>
<td>Loop(C^2)</td>
</tr>
<tr>
<td>Interpolating</td>
<td>Mod. Butterfly (C^1)</td>
</tr>
<tr>
<td></td>
<td>Kobbelt (C^1)</td>
</tr>
</tbody>
</table>

Dual (vertex split)

- Doo-Sabin, Midedge(C^1)
- Biquartic (C^2)

Zorin & Schroeder, SIGGRAPH 99, Course Notes
Other Subdivision Schemes

- Butterfly subdivision
Other Subdivision Schemes

• Butterfly subdivision
Other Subdivision Schemes

- Butterfly subdivision
Other Subdivision Schemes

- Vertex-split subdivision (Doo-Sabin, Midedge, Biquartic)

One step of Midedge subdivision
Other Subdivision Schemes

- Vertex-split subdivision (Doo-Sabin, Midedge, Biquartic)

Multiple steps of Midedge subdivision
Drawing Subdivision Surfaces

• Goal:
 • Draw best approximation of smooth limit surface
 • With limited triangle budget
Drawing Subdivision Surfaces

• Goal:
 • Draw best approximation of smooth limit surface
 • With limited triangle budget

• Solution:
 • Stop subdivision at different levels across the surface
 • Stop-criterion depending on quality measure

• Quality of approximation can be defined by
 • Projected (screen) area of final triangles
 • Local surface curvature
Adaptive Subdivision

10072 Triangles

228654 Triangles

[Kobbelt 2000]
Adaptive Subdivision

• Problem:
 • Different levels of subdivision may lead to gaps in the surface

[Kobbelt 2000]
Adaptive Subdivision

• Solution:
 • Replacing incompatible coarse triangles by *triangle fan*
 • Balanced subdivision: neighboring subdivision levels must not differ by more than one

[Unbalanced] [Balanced]

[Kobbelt 2000]
Subdivision Surface Summary

• Advantages:
 • Simple method for describing complex surfaces
 • Relatively easy to implement
 • Arbitrary topology
 • Intuitive specification
 • Local support
 • Guaranteed continuity
 • Multiresolution

• Difficulties:
 • Parameterization
 • Intersections
Comparison

Parametric surfaces
- Provide parameterization
- More restriction on topology of control mesh
- Some require careful placement of control mesh vertices to guarantee continuity (e.g., Bezier)

Subdivision surfaces
- No parameterization
- Subdivision rules can be defined for arbitrary topologies
- Provable continuity for all placements of control mesh vertices
Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>Polygonal Mesh</th>
<th>Parametric Surface</th>
<th>Subdivision Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Concise</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Intuitive specification</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Local support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Affine invariant</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Arbitrary topology</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Guaranteed continuity</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Natural parameterization</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Efficient display</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Efficient intersections</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>