COS 426: Computer Graphics

Neural Rendering

Felix Heide

PRINCETON UNIVERSITY

.... so far so good: Computer Graphics

Source: (Project Sol Part 2) https://www.youtube.com/watch?v=pNmhJx8yPLk

Rendering Equation

 $\left[L_{\rm o}(\mathbf{p},\,\omega_{\rm o}) \right] = \left[L_{\rm e}(\mathbf{p},\,\omega_{\rm o}) \right] + \left[\int_{\Omega} \left[L_{\rm i}(\mathbf{p},\,\omega_{\rm i}) \right] f_{\rm r}(\mathbf{p},\,\omega_{\rm i},\,\omega_{\rm o}) \left(\omega_{\rm i}\,\cdot\,\mathbf{n} \right) \right] \mathrm{d}\,\omega_{\rm i} \right]$

Outgoing radiance

Incident radiance BRDF

Rendering Equation

 $L_{\rm o}(\mathbf{p},\,\omega_{\rm o}) = L_{\rm e}(\mathbf{p},\,\omega_{\rm o}) + \int_{\Omega} [L_{\rm i}(\mathbf{p},\,\omega_{\rm i})] f_{\rm r}(\mathbf{p},\,\omega_{\rm i},\,\omega_{\rm o}) (\omega_{\rm i}\,\cdot\,\mathbf{n}) \,\mathrm{d}\,\omega_{\rm i}$

Generative Adversarial Networks

Real images

Generative Adversarial Networks

StyleGAN [Karras et al., 2019]

Conditional Generative Models

Vid2Vid [Wang et al., 2019]

Two Alternatives of Realistic Image Synthesis

Neural Rendering to the rescue!

Generative Machine Learning (ML) Cons:

- **Requires lots of training data**
- No fine-grained semantic control of the scene parameters, e.g., motion or illumination

Pros:

- Fully automatic training
- Interactive inference/rendering

Neural Rendering - Graphics vs. Learning

Neural Rendering to the rescue!

CG Modules

Rasterization

Rendering Parameters

Rendering

Computer Graphics Module: Rasterization is used to synthesize the input to the network.

Face Animation

Deep Video Portraits [Kim et al., 2018]

10

CG Modules

Computer Graphics Module: *Differentiable* Volume Renderer

Neural Volumes [Lombardi et al., 2019]

11

Neural Rendering Definition:

"(Deep) neural networks for image or video generation that

enable explicit or implicit control of scene properties"

Allows us to create photorealistic assets

Neural Rendering Zoo

Point cloud

Depth map

Voxel grid

Do sensors output data in this representation?

Point cloud

Depth map

Voxel grid

- Do sensors output data in this representation?
- Can we process/generate content in this representation?

Point cloud

Depth map

Voxel grid

- Do sensors output data in this representation?
- Can we process/generate content in this representation?
- Can we easily render this representation?

Depth map

Voxel grid

What's the right scene representation for 3D vision?

- Sensors don't give us nice data
- World is not dense in 3D space, so maybe representation shouldn't be
- Doing computation directly on "efficient" representations is hard
- What's missing? Efficient representation that's easy to optimize with gradient-based methods!

NeRF (neural radiance fields):

Neural networks as a volume representation, using volume rendering to do view synthesis. $(x, y, z, \theta, \phi) \rightarrow color, opacity$

"Soft" volumetric functions better suited for gradient-based optimization

(Coordinate-based) neural network represents scene as continuous function

NeRF: neural volumetric rendering for view synthesis

Inputs: sparsely sampled images of scene

Outputs: new views of same scene

NeRF in the Wild, Martin-Brualla et al.

NeRFies, Park et al.

NeRF in the Wild

Neural Scene Flow Fields, Li et al.

NeRF in the Wild

Neural Scene Flow Fields, Li et al.

NeRF in the Wild

Neural Scene Flow Fields, Li et al.

Representing a scene as a continuous 5D function

 (x, y, z, θ, ϕ) Spatial Viewing direction location

Neural network replaces large N-d array: tradeoff between storage and computation

(x, y, z, θ, ϕ)

versus

Rendering model for ray r(t) = o + td:

Rendering model for ray r(t) = o + td:

Rendering model for ray r(t) = o + td:

Rendering model for ray r(t) = o + td:

weights How much light is blocked earlier along ray:

Rendering model for ray r(t) = o + td:

weights How much light is blocked earlier along ray:

$$T_i = \prod_{\substack{j=1\\ j=1}}^{i-1} (1-\alpha_j)$$
 How much light is contributed by ray segment i :

$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$

Viewing directions as input

Viewing directions as input

Manipulate (θ, ϕ) to visualize view dependent effects

Viewing directions as input

Radiance distribution for point on side of ship

Radiance distribution for point on water's surface

Volume rendering is trivially differentiable

$$T_i = \prod_{j=1}^{i-1} (1-\alpha_j)$$
 How much light is contributed by ray segment i :

$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$

Optimize with gradient descent on rendering loss

 $\min_{\Omega} \sum_{i} \| \operatorname{render}^{(i)}(F_{\Omega}) - I_{gt}^{(i)} \|$ **II**2

Optimize with gradient descent on rendering loss

Any differentiable scene representation F_{Ω} could be used here $\min_{\Omega} \sum_{i} \| \operatorname{render}^{(i)}(F_{\Omega}) - I_{gt}^{(i)} \|^2$

Training network to reproduce all input views of the scene

Naive implementation produces blurry results

NeRF (Naive)

Naive implementation produces blurry results

NeRF (Naive)

NeRF (with positional encoding)

Challenge:

How to get MLPs to represent higher frequency functions?

Simpler toy problem: memorizing a 2D image

$(x, y) \rightarrow (r, g, b)$

Simple trick enables network to memorize images

Ground truth image

Standard fully-connected net

Positional encoding

Training networks \approx kernel regression

- Recent ML theory work shows that tra becomes the same as performing kern to infinity
- Can examine corresponding kernel fu adding Fourier feature mapping allow

Jacot et al., Neural Tangent Kernel: Convergence and generalization in neural networks, NeurIPS 2018

ining neural network with gradient descent nel regression as the width of each layer goes

nction (the neural tangent kernel) to see why ws MLPs to represent high frequency functions

- Method for fitting a continuous function to a set of data points $\{(x_i, y_i)\}$
- point, each with its own weight
- Weights are optimal in a least-square

Estimated function

Kernel regression

High level: add up a set of blobs (kernel functions), one centered at each input

 $\mathbf{\Lambda}$

es sense:
$$\min_{w} \sum_{i} \parallel y_{i} - f_{w}(x_{i}) \parallel^{2}$$

blob centered at X_i

"Width" of kernel function is critical

- If the kernel function is too wide, reconstruction is too smooth. If it's too skinny, reconstruction does not interpolate correctly.
- Similar to picking the right reconstruction filter bandwidth in signal processing to avoid either blurring or aliasing.

"Width" of kernel function is critical

"Width" of kernel function is critical

Training networks \approx kernel regression

- Recent ML theory work shows that training neural network with gradient descent becomes the same as performing kernel regression as the width of each layer goes to infinity
- Using a Fourier feature mapping changes the corresponding kernel function (the neural tangent kernel), allowing MLPs to represent higher frequency functions

Jacot et al., Neural Tangent Kernel: Convergence and generalization in neural networks, NeurIPS 2018

Simple trick enables network to memorize images

Ground truth image

Standard fully-connected net

Positional encoding also directly improves our scene representation!

NeRF (Naive)

Check out https://bmild.github.io/fourfeat/ for more details

NeRF (with positional encoding)

More detailed and consistent than prior work that represents scene as function encoded by MLP

SRN [Sitzmann et al. 2019]

NeRF

Nearest Input

NeRF encodes convincing view-dependent effects using directional dependence

NeRF encodes convincing view-dependent effects using directional dependence

NeRF encodes detailed scene geometry with occlusion effects

NeRF encodes detailed scene geometry with occlusion effects

NeRF encodes detailed scene geometry with occlusion effects

NeRF encodes detailed scene geometry

- Continuous neural network as a volumetric scene representation (5D = xyz + direction)
- Use volume rendering model to synthesize new views
- Optimize using rendering loss for one scene (no prior training)
- details

NeRF: Key points

Apply positional encoding before passing coordinates into network to recover high frequency