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…. so far so good: Computer Graphics

2Source: (Project Sol Part 2) https://www.youtube.com/watch?v=pNmhJx8yPLk
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Rendering Equation



Rendering Equation
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Generative Adversarial Networks
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Real images
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Generative Adversarial Networks

StyleGAN [Karras et al., 2019] 6



Conditional Generative Models

Generator

Vid2Vid [Wang et al., 2019]
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Two Alternatives of Realistic Image Synthesis

Neural Rendering to the rescue!

Generative Machine Learning (ML)

Cons:
• Requires lots of training data
• No fine-grained semantic control of the scene 

parameters, e.g., motion or illumination

Pros:
• Fully automatic training
• Interactive inference/rendering

Photo-realistic Rendering (CG)

Cons:
• Requires lots of manual work

• Building of high-quality assets
• Setting up the scene

• Long render times

Pros:
• Full control of scene parameter:

• Camera, light sources, motion, geometry, appearance

Fusion of classical CG components with generative ML

Michael Zollhoefer – Facebook Reality Labs Research



Neural Rendering - Graphics vs. Learning

Synthetic ImageScene Description:
• Light sources
• Geometry
• Materials
• Motion
• Camera

Image = CG(Scene)

Real ImagesCan we learn (part of the) scene representation 
and/or (part of the) "CG" function?

Neural Rendering to the rescue!



CG Modules

Face Animation

Rasterization

Rendering-to-video
translation network

Computer Graphics Module: Rasterization is used to synthesize the input to the network.

Deep Video Portraits [Kim et al., 2018]
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Rendering 
Parameters

Rendering



CG Modules

Computer Graphics Module: Differentiable Volume Renderer

Neural Volumes [Lombardi et al., 2019]
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Neural Rendering Definition:

“(Deep) neural networks for image or video generation that 

enable explicit or implicit control of scene properties“

Allows us to create photorealistic assets



Neural Rendering Zoo

e.g., GQN

”Make it more real”

”Step, sample & blend”

“Regress it” 2D Network

“Regress & render”
2D

Network
CG

(3D to 2D)

3D Mesh + 2D Texture

3D 
Volume

MLP CG
(3D to 2D)

2D
Image

Code

Code

Coordinates3D 
Space

e.g., NeRF

e.g., DVP or DNR

e.g., Neural Volumes

…

2D
Image

2D
Image

3D Points

2D EncoderCG
(3D to 2D)

3D Mesh

Codes

2D
Image

2D Decoder3D Points

Michael Zollhoefer – Facebook Reality Labs Research



Triangle meshVoxel gridPoint cloud Depth map

What’s the right scene representation?



‣ Do sensors output data in this representation?

Triangle meshVoxel gridPoint cloud Depth map

What’s the right scene representation?



‣ Can we process/generate content in this representation?

Triangle meshVoxel gridPoint cloud Depth map

What’s the right scene representation?



‣ Can we easily render this representation?

Triangle meshVoxel gridPoint cloud Depth map

What’s the right scene representation?



‣ Sensors don’t give us nice data

‣ World is not dense in 3D space, so maybe representation shouldn’t be

‣ Doing computation directly on “efficient” representations is hard

‣ What's missing? Efficient representation that’s easy to optimize with gradient-based 

methods!

What’s the right scene representation for 3D vision?



NeRF (neural radiance fields):

Neural networks as a volume representation, 
using volume rendering to do view 

synthesis.(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) → color, opacity





Neural Volumetric Rendering



Rendering

What’s the radiance/color arriving at this pixel?



Volumetric 

‣ “Soft” volumetric functions better suited for gradient-based optimization



‣ (Coordinate-based) neural network represents scene as continuous function

Neural 

(x,y,z) Scene
Properties



NeRF: neural volumetric rendering for view synthesis

Inputs: sparsely sampled images of scene Outputs: new views of same scene





NeRF in the Wild, Martin-Brualla et al.



NeRF in the Wild, Martin-Brualla et al.

NeRFies, Park et al.



NeRFies, Park et al.

NeRF in the Wild

Neural Scene Flow Fields, Li et al.



NeRFies, Park et al.

NeRF in the Wild

Neural Scene Flow Fields, Li et al.

Dynamic Neural Radiance Fields, Gafni et al.



NeRFies, Park et al.

NeRF in the Wild

Neural Scene Flow Fields, Li et al.

Dynamic Neural Radiance Fields, Gafni et al.

Neural Scene Graphs, Ost et al.



Representing a scene as a continuous 5D function

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹Ω

{ {Spatial 

location

Viewing 

direction

Fully-connected neural 

network

9 layers, 

256 channels

Output 

color

{ Output 

density

{



Neural network replaces large N-d array: tradeoff between 
storage and computation

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹Ω

𝑥

𝑦

𝑧
(𝑟, 𝑔, 𝑏, 𝜎)

versus



Generate views with traditional volume rendering

Ω



Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:

3D volume

𝑡𝑁

Camera

Ray



Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:

3D volume

𝑡1

𝑡𝑁

Camera

Ray

colors

weights



Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:

3D volume

𝑡1

𝑡𝑁

Camera

Ray

colors

weights



Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray:

3D volume

𝑡1

𝑡𝑁

Camera

Ray

colors

weights



Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume

𝑡1

𝑡𝑁

Camera

Ray

colors

weights



3D volume

𝑡𝑁

Camera

Ray

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) as input

Viewing directions as input



Viewing directions as input

3D volume

𝑡𝑁

Camera

Ray

Manipulate (𝜃, 𝜙) to visualize view-

dependent effects



Viewing directions as input

Radiance distribution for 

point on side of ship

Radiance distribution for 

point on water’s surface



Volume rendering is trivially differentiable

Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume

𝑡1

𝑡𝑁

Camera

Ray

colors

weights

differentiable w.r.t.



Optimize with gradient descent on rendering loss

𝑚𝑖𝑛
Ω

∑
𝑖
∥ render(𝑖)(𝐹Ω) − 𝐼gt

(𝑖)
∥2

Ω



Optimize with gradient descent on rendering loss

𝑚𝑖𝑛
Ω

∑
𝑖
∥ render(𝑖)(𝐹Ω) − 𝐼gt

(𝑖)
∥2

Any differentiable scene representation 𝐹Ω
could be used here



Training network to reproduce all input views of the scene



Naive implementation produces blurry results

NeRF (Naive)



NeRF (Naive) NeRF (with positional encoding)

Naive implementation produces blurry results



Challenge:
How to get MLPs to represent higher frequency functions?



Simpler toy problem: memorizing a 2D image

(𝑥, 𝑦) (𝑟, 𝑔, 𝑏)
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Simple trick enables network to memorize images 

Ground truth image Standard fully-connected net



Positional encoding



Training networks ≈ kernel regression

‣ Recent ML theory work shows that training neural network with gradient descent 

becomes the same as performing kernel regression as the width of each layer goes 

to infinity

‣ Can examine corresponding kernel function (the neural tangent kernel) to see why 

adding Fourier feature mapping allows MLPs to represent high frequency functions

Jacot et al., Neural Tangent Kernel: Convergence and generalization in neural 

networks, NeurIPS 2018



Kernel regression

‣ Method for fitting a continuous function to a set of data points {(𝑥𝑖 , 𝑦𝑖)}

‣ High level: add up a set of blobs (kernel functions), one centered at each input 

point, each with its own weight

‣ Weights are optimal in a least-squares sense: min𝑤∑𝑖 ∥ 𝑦𝑖 − 𝑓
̂

𝑤(𝑥𝑖) ∥
2

𝑓
̂

𝑤(𝑥) = ∑
𝑖=1

𝑛

𝑤𝑖𝑘(𝑥 − 𝑥𝑖) Blob centered at 

training input point 𝑥𝑖

Weight corresponding to 

blob centered at 𝑥𝑖

Estimated function



“Width” of kernel function is critical

‣ If the kernel function is too wide, reconstruction is too smooth. If it’s too skinny, 

reconstruction does not interpolate correctly.

‣ Similar to picking the right reconstruction filter bandwidth in signal processing to 

avoid either blurring or aliasing.



“Width” of kernel function is critical

Training data

(all yellow points)

Kernel shape

Function estimated by 

kernel regression

Avg distance between 

training points



“Width” of kernel function is critical



Training networks ≈ kernel regression

‣ Recent ML theory work shows that training neural network with gradient descent 

becomes the same as performing kernel regression as the width of each layer goes 

to infinity

‣ Using a Fourier feature mapping changes the corresponding kernel function (the 

neural tangent kernel), allowing MLPs to represent higher frequency functions

Jacot et al., Neural Tangent Kernel: Convergence and generalization in neural 

networks, NeurIPS 2018



Fourier feature mapping: simple 2D example

𝐱

𝑥1

𝑥2

𝛾(𝐱)

…

cos(2𝜋𝐛1
⊤𝐱)sin(2𝜋𝐛1

⊤𝐱)

cos(2𝜋𝐛2
⊤𝐱)

cos(2𝜋𝐛3
⊤𝐱)

cos(2𝜋𝐛𝑁−2
⊤ 𝐱)

cos(2𝜋𝐛𝑁−1
⊤ 𝐱)

cos(2𝜋𝐛𝑁
⊤𝐱)

sin(2𝜋𝐛2
⊤𝐱)

sin(2𝜋𝐛3
⊤𝐱)

sin(2𝜋𝐛𝑁−2
⊤ 𝐱)

sin(2𝜋𝐛𝑁−1
⊤ 𝐱)

sin(2𝜋𝐛𝑁
⊤𝐱)
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Simple trick enables network to memorize images 

Standard fully-connected net With “encoding”Ground truth image



Positional encoding also directly improves our scene representation!

NeRF (Naive) NeRF (with positional encoding)

Check out https://bmild.github.io/fourfeat/ for more details

https://bmild.github.io/fourfeat/




More detailed and consistent than prior work that represents 
scene as function encoded by MLP

SRN [Sitzmann et al. 2019]



NeRF encodes convincing view-dependent effects using 
directional dependence



NeRF encodes convincing view-dependent effects using 
directional dependence



NeRF encodes detailed scene geometry with occlusion effects



NeRF encodes detailed scene geometry with occlusion effects



NeRF encodes detailed scene geometry with occlusion effects



NeRF encodes detailed scene geometry



NeRF: Key points

‣ Continuous neural network as a volumetric scene representation (5D = xyz + direction)

‣ Use volume rendering model to synthesize new views

‣ Optimize using rendering loss for one scene (no prior training)

‣ Apply positional encoding before passing coordinates into network to recover high frequency 

details


