The 3D Rasterization Pipeline

COS 426, Spring 2022
Felix Heide
Princeton University

3D Rendering Scenarios

- Offline
- One image generated with as much quality as possible for a particular set of rendering parameters
- Take as much time as is needed (minutes)
- Targets photorealistism, movies, etc.
$>$ Interactive
- Images generated dynamically, in fraction of a second (e.g., $1 / 30$) as user controls rendering parameters (e.g., camera)
- Achieve highest quality possible in given time
- Visualization, games, etc.

3D Polygon Rendering

- Many applications use rendering of 3D polygons with direct illumination

Ray Casting Revisited

- For each sample ...
- Construct ray from eye position through view plane
- Find first surface intersected by ray through pixel
- Compute color of sample based on illumination

3D Polygon Rasterization

- We can render polygons faster if we take advantage of spatiall coherence

3D Polygon Rasterization

- How?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
00	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

3D Polygon Rasterization

- How?

\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc
-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-		\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0		\bigcirc		\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc	
0	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	-
		\bigcirc					p	\bigcirc	\bigcirc
\bigcirc								\bigcirc	\bigcirc
\bigcirc								0	\bigcirc
\bigcirc	\bigcirc			\bigcirc	\bigcirc			\bigcirc	\bigcirc
-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	\bigcirc

Rasterization Pipeline (for direct llumination)

3D Primitives

This is a pipelined sequence of operations to draw 3D primitives into a 2D image

Rasterization Pipeline (for direct llumination)


```
glBegin(GL_POLYGON);
glVertex3f(0.0, 0.0, 0.0);
glVertex3f(1.0, 0.0, 0.0);
glVertex3f(0.0, 1.0, 0.0);
glEnd();
```

OpenGL executes steps of 3D rendering pipeline for each polygon

Rasterization Pipeline (for direct llumination)

3D Primitives

Transform into 3D world coordinate system

Rasterization Pipeline (for direct llumination)

3D Primitives
 Transformation

Viewing
Transformation

Projection
Transformation

Transform into 3D world coordinate system

Illuminate according to lighting and reflectance

Rasterization Pipeline (for direct llumination)

3D Primitives

Transform into 3D world coordinate system

Illuminate according to lighting and reflectance
Transform into 3D camera coordinate system

Rasterization Pipeline (for direct llumination)

3D Primitives

Transform into 3D world coordinate system

Illuminate according to lighting and reflectance

Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

Rasterization Pipeline (for direct llumination)

Transform into 3D world coordinate system
Illuminate according to lighting and reflectance

Transform into 3D camera coordinate system
Transform into 2D camera coordinate system

Clip primitives outside camera's view

Rasterization Pipeline (for direct llumination)

3D Primitives

Transform into 3D world coordinate system

Illuminate according to lighting and reflectance

Transform into 3D camera coordinate system
Transform into 2D camera coordinate system
Clip primitives outside camera's view ... in clip space

Rasterization Pipeline (for direct llumination)

Transform into 3D world coordinate system
Illuminate according to lighting and reflectance

Transform into image coordinate system

Rasterization Pipeline (for direct llumination)

3D Primitives

Transform into 3D world coordinate system
Illuminate according to lighting and reflectance

Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

Draw pixels (includes texturing, hidden surface, ...)

Rasterization Pipeline (for direct llumination)

3D Primitives

Transform into 3D world coordinate system

Illuminate according to lighting and reflectance

Transform into 3D camera coordinate system
Transform into 2D camera coordinate system

Clip primitives outside camera's view

Transform into image coordinate system

Draw pixels (includes texturing, hidden surface, ...)

Transformations

$p(x, y, z)$
3D Object Coordinates
Modeling
Transformation
3D World Coordinates
Viewing
Transformation
3D Camera Coordinates

Transformations map points from one coordinate system to another

Viewing Transformations

$p(x, y, z)$
3D Object Coordinates
Modeling
Transformation
3D World Coordinates
Viewing
Transformation

Viewing Transformations

Review: Viewing Transformation

- Mapping from world to camera coordinates
- Eye position maps to origin
- Right vector maps to X axis
- Up vector maps to Y axis
- Back vector maps to Z axis

Camera

World

Review: Camera Coordinates

- Canonical coordinate system
- Convention is right-handed (looking down -z axis)
- Convenient for projection, clipping, etc.

Camera up vector
$y \uparrow$ maps to Y axis

Camera back vector maps to Z axis

Camera right vector maps to X axis
(pointing out of page) z

Finding the Viewing Transformation

- Trick: map from camera coordinates to world
- Origin maps to eye position
- Z axis maps to Back vector
- Y axis maps to Up vector
- X axis maps to Right vector

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
R_{x} & U_{x} & B_{x} & E_{x} \\
R_{y} & U_{y} & B_{y} & E_{y} \\
R_{z} & U_{z} & B_{z} & E_{z} \\
R_{w} & U_{w} & B_{w} & E_{w}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]
$$

- This matrix is T^{-1} so we invert it to get $T \ldots$ easy!

Finding the viewing transformation

- We have the camera (in world coordinates)
- We want T taking objects from world to camera

$$
p^{c}=T p^{w}
$$

- Trick: find T^{-1} taking objects in camera to world

$$
p^{w}=T^{-1} p^{c}
$$

Viewing Transformations

$p(x, y, z)$
3D Object Coordinates
Modeling
Transformation

Viewing Transformations

Viewport
Transformation
2D Image Coordinates
$p^{\prime}\left(x^{\prime}, y^{\prime}\right)$

Projection

- General definition:
- Transform points in n-space to m-space ($m<n$)
- In computer graphics:
- Map 3D camera coordinates to 2D screen coordinates

Perspective vs. Parallel

- Perspective projection
+ Size varies inversely with distance - looks realistic
- Distance and angles are not (in general) preserved
- Parallel lines do not (in general) remain parallel
- Parallel projection
+ Good for exact measurements
+ Parallel lines remain parallel
- Angles are not (in general) preserved
- Less realistic looking

Taxonomy of Projections

Taxonomy of Projections

Planar geometric projections

Isometric

Parallel Projection

- Center of projection is at infinity
- Direction of projection (DOP) same for all points

Orthographic Projections

- DOP perpendicular to view plane

Side

Parallel Projection Matrix

Parallel Projection Matrix

- General parallel projection transformation:

Parallel Projection View Volume

H\&B Figure 12.30

Taxonomy of Projections

Return to Perspective Projection

- Map points onto "view plane" along "projectors" emanating from "center of projection" (COP)

Perspective Projection

- Compute 2D coordinates from 3D coordinates with similar triangles

Perspective Projection

- Compute 2D coordinates from 3D coordinates with similar triangles

Perspective Projection Matrix

- 4×4 matrix representation?

$$
\begin{aligned}
& x_{s}=x_{c} D / z_{c} \\
& y_{s}=y_{c} D / z_{c} \\
& z_{s}=D \\
& w_{s}=1
\end{aligned}
$$

$$
\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{s} \\
w_{s}
\end{array}\right]=\left[\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
1
\end{array}\right]
$$

Perspective Projection Matrix

- 4×4 matrix representation?

$$
\begin{array}{lll}
x_{s}=x_{c} D / z_{c} & x_{s}=x^{\prime} / w^{\prime} & x^{\prime}=x_{c} \\
y_{s}=y_{c} D / z_{c} & y_{s}=y^{\prime} / w^{\prime} & y^{\prime}=y_{c} \\
z_{s}=D & z_{s}=z^{\prime} / w^{\prime} & z^{\prime}=z_{c} \\
w_{s}=1 & & w^{\prime}=z_{c} / D
\end{array}
$$

$$
\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{s} \\
w_{s}
\end{array}\right]=\left[\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
1
\end{array}\right]
$$

Perspective Projection Matrix

- 4×4 matrix representation?

$$
\begin{array}{lll}
x_{s}=x_{c} D / z_{c} & x_{s}=x^{\prime} / w^{\prime} & x^{\prime}=x_{c} \\
y_{s}=y_{c} D / z_{c} & y_{s}=y^{\prime} / w^{\prime} & y^{\prime}=y_{c} \\
z_{s}=D & z_{s}=z^{\prime} / w^{\prime} & z^{\prime}=z_{c} \\
w_{s}=1 & & w^{\prime}=z_{c} / D
\end{array}
$$

$$
\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{s} \\
w_{s}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / D & 0
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
1
\end{array}\right]
$$

Perspective Projection Matrix

- In practice, want to compute a value related to depth to include in z-buffer

$$
\begin{aligned}
& \begin{array}{lll}
x_{s}=x_{c} D / z_{c} \\
y_{s}=y_{c} D / z_{c} \\
z_{s}=-D / z_{c} & y_{s}=x^{\prime} / w^{\prime} & x^{\prime}= \\
w_{s}=1 & z_{s}=z^{\prime} / w^{\prime} & y^{\prime} \\
z^{\prime}= \\
w^{\prime} \\
{\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{s} \\
w_{s}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 / D & 0
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
1
\end{array}\right]}
\end{array} \\
&
\end{aligned}
$$

$$
x^{\prime}=x_{c}
$$

$$
y^{\prime}=y_{c}^{c}
$$

$$
z^{\prime}=-1
$$

$$
w^{\prime}=z_{c} / D
$$

Perspective Projection View Volume

H\&B Figure 12.30

Perspective vs. Parallel

- Perspective projection
+ Size varies inversely with distance - looks realistic
- Distance and angles are not (in general) preserved
- Parallel lines do not (in general) remain parallel
- Parallel projection
+ Good for exact measurements
+ Parallel lines remain parallel
- Angles are not (in general) preserved
- Less realistic looking

Transformations

$p(x, y, z)$
3D Object Coordinates
Modeling
Transformation
3D World Coordinates
Viewing
Transformation
3D Camera Coordinates
Projection
Transformation

2D Screen Coordinates

Viewport
 Transformation

2D Image Coordinates
$p^{\prime}\left(x^{\prime}, y^{\prime}\right)$

Transformations map points from one coordinate system to another

Viewport Transformation

- Transform 2D geometric primitives from screen coordinate system (normalized device coordinates) to image coordinate system (pixels)

Screen

Image

Viewport Transformation

- Window-to-viewport mapping

Screen Coordinates

$$
\begin{aligned}
& v x=v x 1+(w x-w x 1) *(v x 2-v x 1) /(w x 2-w x 1) ; \\
& v y=v y 1+(w y-w y 1) *(v y 2-v y 1) /\left(w y^{2}-w y 1\right) ;
\end{aligned}
$$

Summary of Transformations

$p(x, y, z)$
3D Object Coordinates

3D World Coordinates

3D Camera Coordinates

2D Image Coordinates
Modeling transformation
$p^{\prime}\left(x^{\prime}, y^{\prime}\right)$
Viewport
Transformation

3D Rendering Pipeline (for direct illumination)

3D Primitives

Clipping

- Avoid drawing parts of primitives outside window
- Window defines part of scene being viewed
- Must draw geometric primitives only inside window

Polygon Clipping

- Find the part of a polygon inside the clip window?

Before Clipping

Polygon Clipping

- Find the part of a polygon inside the clip window?

After Clipping

Sutherland Hodgeman Clipping

- Clip to each window boundary one at a time (for convex polygons)

Sutherland Hodgeman Clipping

- Clip to each window boundary one at a time

Sutherland Hodgeman Clipping

- Clip to each window boundary one at a time

Sutherland Hodgeman Clipping

- Clip to each window boundary one at a time

Sutherland Hodgeman Clipping

- Clip to each window boundary one at a time

Clipping to a Boundary

- Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

Clipping to a Boundary

- Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

Clipping to a Boundary

- Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

Clipping to a Boundary

- Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

Clipping to a Boundary

- Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

Clipping to a Boundary

- Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

Clipping to a Boundary

- Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

Clipping to a Boundary

- Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

Clipping to a Boundary

- Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

Sutherland Hodgeman Failure

- Concave Polygons

Sutherland Hodgeman Failure

- Concave Polygons

3D Rendering Pipeline (for direct illumination)

3D Rendering Pipeline (for direct illumination)

Standard (aliased)
Scan Conversion

3D Rendering Pipeline (for direct illumination)

3D Primitives

Antialiased Scan Conversion

Scan Conversion

- Render an image of a geometric primitive by setting pixel colors

```
void SetPixel(int x, int y, Color rgba)
```

- Example: Filling the inside of a triangle

Triangle Scan Conversion

- Properties of a good algorithm
- Symmetric
- Straight edges
- No cracks between adjacent primitives
- (Antialiased edges)
- FAST!

Simple Algorithm

- Color all pixels inside triangle

```
void ScanTriangle(Triangle T, Color rgba){
    for each pixel P in bbox(T) {
        if (Inside(T, P))
        SetPixel(P.x, P.Y, rgba);
    }
}
```


Triangle Sweep-Line Algorithm

- Take advantage of spatial coherence
- Compute which pixels are inside using horizontal spans
- Process horizontal spans in scan-line order
- Take advantage of edge linearity
- Use edge slopes to update coordinates incrementally

Triangle Sweep-Line Algorithm

void ScanTriangle(Triangle T, Color rgba) \{ for each edge pair \{ initialize $\mathbf{x}_{\mathrm{L}}, \mathbf{x}_{\mathrm{R}}$; compute $\mathrm{dx}_{\mathrm{L}} / d \mathrm{y}_{\mathrm{L}}$ and $\mathrm{dx} \mathrm{x}_{\mathrm{R}} / d \mathrm{y}_{\mathrm{R}}$; for each scanline at y
for (int $\mathbf{x}=\mathbf{x}_{\mathrm{L}} ; \mathbf{x}<=\mathrm{x}_{\mathrm{R}} ; \mathbf{x + +}$) SetPixel (x, y, rgba);
$\mathrm{x}_{\mathrm{L}}+=\mathrm{dx}_{\mathrm{L}} / \mathrm{dy}_{\mathrm{L}}$;
$\mathbf{x}_{\mathrm{R}}+=\mathrm{dx} \mathrm{X}_{\mathrm{R}} / \mathrm{dy}_{\mathrm{R}}$;
\}

Triangle Sweep-Line Algorithm

void ScanTriangle(Triangle T, Color rgba) \{ for each edge pair \{ initialize $\mathbf{x}_{\mathrm{L}}, \mathrm{x}_{\mathrm{R}}$; compute $\mathrm{dx}_{\mathrm{L}} / d \mathrm{y}_{\mathrm{L}}$ and $\mathrm{dx} \mathrm{x}_{\mathrm{R}} / d \mathrm{y}_{\mathrm{R}}$; for each scanline at y for (int $\mathbf{x}=\mathbf{x}_{\mathrm{L}} ; \mathbf{x}<=\mathrm{x}_{\mathrm{R}} ; \mathbf{x + +}$) SetPixel(x, y, rgba);
$\mathrm{x}_{\mathrm{L}}+=\mathrm{dx}_{\mathrm{I}} / \mathrm{dy}_{\mathrm{L}} ;$ $\mathbf{x}_{\mathrm{R}}+=\mathrm{d} \mathbf{y}_{\mathrm{R}} / \mathrm{dy} \mathbf{y}_{\mathrm{R}}$;
\}
Minimize computation in inner loops

GPU Architecture

NVIDIA architecture based on Fermi logical pipeline

When tessellation is not used, two principle phases are sufficient. Work is redistributed across entire GPU after each phase.

Work Distribution Crossbar sends triangle to raster engine(s) based on screen rectangle

Multiple GPCs with their SMs can be shading the pixels of one triangle.

GF $\mathbf{1 0 0}$ Memory Hierarchy

Uniform cache not shown, can cause
warp-serialized access on divergent loads
~ latencies

tens of
cycles

several
hundred
cycles

Shared Memory

SM organizes threads in groups of 32 called warp. The threads within are processed in lock-step.

Each warp gets subset of register file. If a shader needs many registers -> less warps resident, less latency hiding

A given warp is processed in-order and it may take several executions until an instruction is advanced (depends on hwgeneration and type of instruction). The scheduler switches between warps to avoid waiting for instructions that take longer (memory fetches...).

Divergent behavior between threads within warp (if/else block, loops with varying iterations..) can increase computation time for all because of lockstep processing and may risk under utilizing cores.

GPU Architecture

Fermi, Kepler, Maxwell Evolution

Kepler and Maxwell work in principle similar to Fermi. The most obvious changes are typically in the SM design or number of ROPs. The overall design can be scaled from high-end desktop to mobile by varying the number of modules.
http://www.hardwarebg.com/b4k/files/nvidia_gf100_whitepaper.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010_Hot3D_NVIDIA.pdf

GPU Architecture

NVIDIA architecture based on Fermi logical pipeline

When tessellation is not used, two principle phases are sufficient. Work is redistributed across entire GPU after each phase.

Work Distribution Crossbar sends triangle to raster engine(s) based on screen rectangle

> Example config: 4 GPCs each 4 SMs

Multiple GPCs with their SMs can be shading the pixels of one triangle.

GF $\mathbf{1 0 0}$ Memory Hierarchy

Uniform cache not shown, can cause
warp-serialized access on divergent loads

