Global Illumination

COS 426, Spring 2022
Felix Heide Princeton University

Overview

- Direct Illumination
- Emission at light sources
- Scattering at surfaces
- Global illumination
- Shadows
- Inter-object reflections
- Rendering equation
- Recursive ray tracing
- More advanced ray tracing
- Radiosity

Direct Illumination (last lecture)

- For each ray traced from camera
- Sum radiance from each light that is reflected at surface. Light

$$
I_{i}=\frac{\mathrm{I}_{0}}{c_{a}+l_{a} d+q_{a} d^{2}}
$$

Camera

$$
I=I_{E}+K_{A} I_{A L}+\sum_{i}\left(K_{D}\left(N \cdot L_{i}\right)+K_{S}\left(V \cdot R_{i}\right)^{n}\right) I_{i}
$$

Direct illumination example

Direct Lighting Only

Overview

- Direct Illumination
- Emission at light sources
- Scattering at surfaces
> Global illumination
- Shadows
- Inter-object reflections
- Rendering equation
- Recursive ray tracing
- More advanced ray tracing
- Radiosity

Global illumination example

Direct Lighting Only

Direct + Indirect Lighting

Overview

- Direct Illumination
- Emission at light sources
- Scattering at surfaces
- Global illumination
> Shadows
- Inter-object reflections
- Rendering equation
- Recursive ray tracing
- More advanced ray tracing
- Radiosity

Shadows

- Hard shadows from point light sources

Light

Camera

Shadows

- Hard shadows from point light sources

Shadows

- Hard shadows from point light sources

Shadows

- Hard shadows from point light sources
- Cast ray towards light; $S_{L}=0$ if blocked, $S_{L}=1$ otherwise

Shadows in 2D

- Soft shadows from area light sources
- Umbra = fully shadowed

Shadows in 2D

- Soft shadows from area light sources
- Umbra = fully shadowed

Shadows in 2D

- Soft shadows from area light sources
- Umbra = fully shadowed

Shadows in 2D

- Soft shadows from area light sources
- Umbra = fully shadowed
- Penumbra = partially shadowed

Shadows in 2D

- Soft shadows from area light sources
- Umbra = fully shadowed
- Penumbra = partially shadowed

Shadows in 2D

- Soft shadows from area light sources
- Umbra = fully shadowed
- Penumbra = partially shadowed

Shadows in 2D

- Soft shadows from area light sources
- Umbra = fully shadowed
- Penumbra = partially shadowed

Shadows in 2D

- Soft shadows from area light sources
- Umbra = fully shadowed
- Penumbra = partially shadowed

Shadows in 2D

- Soft shadows from area light sources
- Umbra = fully shadowed
- Penumbra = partially shadowed
- Outside = fully visible

Shadows in 2D

- Soft shadows from area light sources
- Umbra = fully shadowed
- Penumbra = partially shadowed
- Outside = fully visible

Shadows in 2D

- Soft shadows from area light sources
- Umbra = fully shadowed
- Penumbra = partially shadowed
- Outside = fully visible

Shadows in 3D

- Soft shadows from area light sources
- Umbra = fully shadowed
- Penumbra = partially shadowed
penumbra

Shadows

- Soft shadows from area light sources
- Average illumination for M sample rays per light

Shadows

- Soft shadows from circular area light sources
- Average illumination for M sample rays per light
- Generate M random sample points on area light (e.g., with rejection sampling)
- Compute illumination for every sample
- Average

$I=\cdots+\sum_{i \in \text { AreaLights }} \frac{1}{M} \sum_{j \in \text { samples }}^{M}\left(K_{D}\left(N \cdot L_{i}\right)+K_{S}\left(V \cdot R_{i}\right)^{n}\right) S_{i j} I_{i j}$

Overview

- Direct Illumination
- Emission at light sources
- Scattering at surfaces
- Global illumination
- Shadows
> Inter-object reflections
- Rendering equation
- Recursive ray tracing
- More advanced ray tracing
- Radiosity

Inter-Object Reflection

Inter-Object Reflection

- Radiance leaving point x on surface is sum of reflected irradiance arriving from other surfaces

Camera

Solid Angle

- Angle in radians

Solid Angle

- Angle in radians
- Solid angle in steradians

Area A
Solid angle $\omega=A / r^{2}$
(Full sphere is 4π steradians.)

Light Emitted from a Surface

- Power per unit area per unit solid angle Radiance (L)
- Measured in W/m²/sr

$$
L=\frac{d \Phi}{d A d \omega}
$$

Rendering Equation [Kajiya 86]

- Compute radiance in outgoing direction

Rendering Equation [Kajiya 86]

- Compute radiance in outgoing direction

Rendering Equation [Kajiya 86]

- Compute radiance in outgoing direction

Rendering Equation [Kajiya 86]

- Compute radiance in outgoing direction by integrating reflections over all incoming directions

Rendering Equation [Kajiya 86]

- Compute radiance in outgoing direction by integrating reflections over all incoming directions

Overview

- Direct Illumination
- Emission at light sources
- Scattering at surfaces
- Global illumination
- Shadows
- Inter-object reflections
- Rendering equation
> Recursive ray tracing
- More advanced ray tracing
- Radiosity

Recursive Ray Tracing

- Assume only significant irradiance is in directions of light sources, specular reflection, and refraction

Recursive Ray Tracing

- Compute radiance in outgoing direction by summing reflections from directions of lights, specular reflections, and refractions

$$
I=I_{E}+K_{A} I_{A L}+\sum_{L}\left(K_{D}\left(N \cdot L_{i}\right)+K_{S}\left(V \cdot R_{i}\right)^{n}\right) S_{L} I_{L}+K_{S} I_{R}+K_{T} I_{T}
$$

Recursive Ray Tracing

- Same as ray casting, but trace secondary rays for specular (mirror) reflection and refraction

$$
I=I_{E}+K_{A} I_{A L}+\sum_{L}\left(K_{D}\left(N \cdot L_{i}\right)+K_{S}\left(V \cdot R_{i}\right)^{n}\right) S_{L} I_{L}+K_{S} I_{R}+K_{T} I_{T}
$$

Specular Reflection

- Trace secondary ray in direction of mirror reflection
- Evaluate radiance along secondary ray and include it into illumination model

wikimedia.org/wikipedia/en/c/c 1/Cloud_Gate_(The_Bean)_from_east'.jpg

$$
I=I_{E}+K_{A} I_{A L}+\sum_{L}\left(K_{D}\left(N \cdot L_{i}\right)+K_{S}\left(V \cdot R_{i}\right)^{n}\right) S_{L} I_{L}+K_{S} I_{R}+K_{T} I_{T}
$$

Refraction

- Trace secondary ray in direction of refraction
- Evaluate radiance along secondary ray and include it into illumination model

$$
I=I_{E}+K_{A} I_{A L}+\sum_{L}\left(K_{D}\left(N \cdot L_{i}\right)+K_{S}\left(V \cdot R_{i}\right)^{n}\right) S_{L} I_{L}+K_{S} I_{R}+K_{T} I_{T}
$$

Recursive Ray Tracing

- ComputeRadiance is called recursively

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray, R3Intersection\& hit) \{

R3Ray specular_ray = SpecularRay(ray, hit);
R3Ray refractive_ray = RefractiveRay(ray, hit);
R3Rgb radiance $=$ Phong(scene, ray, hit) +
Ks * ComputeRadiance(scene, specular_ray) + Kt * ComputeRadiance(scene, refractive_ray);
return radiance;

Recursive Ray Tracing

- Specular reflection and refraction

Recursive Ray Tracing

- Specular reflection and refraction $\rightarrow \mathbf{L D}(\mathbf{S} \mid \mathbf{R})^{\star} E$

Overview

- Direct Illumination
- Emission at light sources
- Scattering at surfaces
- Global illumination
- Shadows
- Inter-object reflections
- Rendering equation
- Recursive ray tracing
> More advanced ray tracing
- Radiosity

Beyond Recursive Ray Tracing

Distributed Ray Tracing

- Estimate integral for each reflection by sampling incoming directions

Distributed Ray Tracing

- Estimate integral for each reflection by sampling incoming directions

$$
L_{o}\left(x^{\prime}, \vec{\omega}^{\prime}\right)=L_{e}\left(x^{\prime}, \vec{\omega}^{\prime}\right)+\sum_{\text {samples }} f_{r}\left(x^{\prime}, \vec{\omega}, \vec{\omega}^{\prime}\right)(\vec{\omega} \cdot \vec{n}) L_{i}\left(x^{\prime}, \vec{\omega}\right) d \vec{\omega}
$$

Ordinary Ray Tracing vs. Distribution Ray Tracing

Ray tracing
Distributed ray tracing

Monte Carlo Path Tracing

- Estimate integral for each pixel by sampling paths from camera

Ray Tracing vs. Path Tracing

Path tracing

Overview

- Direct Illumination
- Emission at light sources
- Scattering at surfaces
- Global illumination
- Shadows
- Inter-object reflections
- Rendering equation
- Recursive ray tracing
- More advanced ray tracing
> Radiosity

Radiosity

- Indirect diffuse illumination - LD*E

Rendering Equation (1)

$$
L_{o}\left(x^{\prime}, \vec{\omega}^{\prime}\right)=L_{e}\left(x^{\prime}, \vec{\omega}^{\prime}\right)+\int_{\Omega} f_{r}\left(x^{\prime}, \vec{\omega}, \vec{\omega}^{\prime}\right)(\vec{\omega} \cdot \vec{n}) L_{i}\left(x^{\prime}, \vec{\omega}\right) d \vec{\omega}
$$

Rendering Equation (2)

Rendering Equation (2)

$L\left(x^{\prime} \rightarrow x^{\prime \prime}\right)=L_{e}\left(x^{\prime} \rightarrow x^{\prime \prime}\right)+\int_{S} f_{r}\left(x \rightarrow x^{\prime} \rightarrow x^{\prime \prime}\right) L\left(x \rightarrow x^{\prime}\right) V\left(x, x^{\prime}\right) G\left(x, x^{\prime}\right) d A$

Rendering Equation (2)

$$
L\left(x^{\prime} \rightarrow x^{\prime \prime}\right)=L_{e}\left(x^{\prime} \rightarrow x^{\prime \prime}\right)+\int_{S} f_{r}\left(x \rightarrow x^{\prime} \rightarrow x^{\prime \prime}\right) L\left(x \rightarrow x^{\prime}\right) V\left(x, x^{\prime}\right) G\left(x, x^{\prime}\right) d A
$$

Rendering Equation (2)

$L\left(x^{\prime} \rightarrow x^{\prime \prime}\right)=L_{e}\left(x^{\prime} \rightarrow x^{\prime \prime}\right)+\int_{S} f_{r}\left(x \rightarrow x^{\prime} \rightarrow x^{\prime \prime}\right) L\left(x \rightarrow x^{\prime}\right) V\left(x, x^{\prime}\right) G\left(x, x^{\prime}\right) d A$

Radiosity Equation

$$
L\left(x^{\prime} \rightarrow x^{\prime \prime}\right)=L_{e}\left(x^{\prime} \rightarrow x^{\prime \prime}\right)+\int_{S} f_{r}\left(x \rightarrow x^{\prime} \rightarrow x^{\prime \prime}\right) L\left(x \rightarrow x^{\prime}\right) V\left(x, x^{\prime}\right) G\left(x, x^{\prime}\right) d A
$$

Assume everything is Lambertian

$$
\rho\left(x^{\prime}\right)=f_{r}\left(x \rightarrow x^{\prime} \rightarrow x^{\prime \prime}\right) \pi
$$

$L\left(x^{\prime}\right)=L_{e}\left(x^{\prime}\right)+\frac{\rho\left(x^{\prime}\right)}{\pi} \int_{S} L(x) V\left(x, x^{\prime}\right) G\left(x, x^{\prime}\right) d A$
Convert to
Radiosities

$$
B=\int_{\Omega} L_{o} \cos \theta d \omega \quad L=\frac{B}{\pi}
$$

$$
B\left(x^{\prime}\right)=B_{e}\left(x^{\prime}\right)+\frac{\rho\left(x^{\prime}\right)}{\pi} \int_{S} B(x) V\left(x, x^{\prime}\right) G\left(x, x^{\prime}\right) d A
$$

Radiosity Approximation

$$
B\left(x^{\prime}\right)=B_{e}\left(x^{\prime}\right)+\frac{\rho\left(x^{\prime}\right)}{\pi} \int_{S} B(x) V\left(x, x^{\prime}\right) G\left(x, x^{\prime}\right) d A
$$

Discretize the surfaces into "elements"

$$
B_{i}=E_{i}+\rho_{i} \sum_{j=1}^{N} B_{j} F_{i j}
$$

where "form factor" F is:
r

A_{i}

$$
F_{i j}=\frac{1}{A_{i}} \int_{A_{i} A_{j}} \int_{i j} \frac{V_{i j} \cos \Theta_{i}^{\prime} \cos \Theta_{o}}{\pi r^{2}} d A_{j} d A_{i}
$$

Radiosity Approximation

Form Factor

On the Form Factor between Two Polygons

Peter Schröder

Pat Hanrahan

Department of Computer Science
Princeton University

Abstract

Form factors are used in radiosity to describe the fraction of diffusely reflected light leaving one surface and arriving at another. They are a fundamental geometric property used for computation. Many special configurations admit closed form solutions. However, the important case of the form factor between two polygons in three space has had no known closed form solution. We give such a solution for the case of general (planar, convex or concave, possibly containing holes) polygons. CR Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism - Radiosity; J. 2 [Physical Sciences and Engineering]: Engineering. Additional Key Words and Phrases: Closed form solution; form factor; polygons.

1 Introduction

When using the radiosity technj factor plays a central role. It 1991), 197-206.

In this paper we present a formula for the form factor integral between two general polygons. The derivation of this formula is quite involved, and the interested reader is referred to [9] for a detailed derivation. The purpose of this paper is to bring this result to the attention of the graphics community.

2 Closed form solution

The form factor integral can be reduced to a double contour integral by two applications of Stokes' theorem [6]

$$
\begin{aligned}
\pi A_{1} F_{12} & =\int_{A_{1}} \int_{A_{2}} \frac{\cos \theta_{1} \cos \theta_{2}}{\|\vec{r}\|^{2}} d A_{2} d A_{1} \\
& =\frac{1}{4} \int_{\partial A_{1}} \int_{\partial A_{2}} \ln (\vec{r} \cdot \vec{r}) d \vec{x}_{2} \cdot d \vec{x}_{1}
\end{aligned}
$$

where θ_{1}, θ_{2} are the angles between the normal vector of the respective surface and a radius vector \vec{r}, which connects two points on the surfaces. The above eauation holds for all surfaces such
[5] Hanrahan, P., Salzman, D., and Aupperle, L. A Rapid Hierarchical Radiosity Algorithm. Computer Graphics 25, 4 (July
[6] Herman, R. A. A Treatise on Geometrical Optics. Cambridge University Press, 1900.
[7] Lambert. Photometria sive de mensura et gradibus luminis, colorum et umbrae. 1760. German translation by E. Anding in Ostwald's Klassiker der Exakten Wissenschaften, Vol. 31-33, Leipzig, 1892.

System of Equations

$$
\begin{aligned}
& B_{i}=E_{i}+\rho_{i} \sum_{j=1}^{N} B_{j} F_{i j} \\
& E_{i}=B_{i}-\rho_{i} \sum_{j=1}^{N} B_{j} F_{i j} \\
& B_{i}-\rho_{i} \sum_{j=1}^{N} B_{j} F_{i j}=E_{i}
\end{aligned}
$$

$$
\left[\begin{array}{ccccc}
1-\rho_{1} F_{1,1} & \cdot & \cdot & \cdot & -\rho_{1} F_{1, n} \\
-\rho_{2} F_{2,1} & 1-\rho_{2} F_{2,2} & \cdot & \cdot & -\rho_{2} F_{2, n} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
-\rho_{n-1} F_{n-1,1} & \cdot & \cdot & \cdot & -\rho_{n-1} F_{n-1, n} \\
-\rho_{n} F_{n, 1} & \cdot & \cdot & \cdot & 1-\rho_{n} F_{n, n}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\cdot \\
\cdot \\
\cdot \\
B_{n}
\end{array}\right]=\left[\begin{array}{c}
E_{1} \\
E_{2} \\
\cdot \\
\cdot \\
\cdot \\
E_{n}
\end{array}\right]
$$

Compare with Direct Illumination

Hugo Elias, Wikipedia

Radiosity

- Application
- Interior lighting design
- LD*E
- Issues
- Computing form factors
- Solving large linear system of equations
- Meshing surfaces into elements
- Rendering images

Summary

- Global illumination
- Rendering equation
- Solution methods
- Sampling
- Ray tracing
- Distributed ray tracing
- Monte Carlo path tracing
- Discretization
- Radiosity

Take-home message:

Photorealistic rendering with global illumination is an integration problem

