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Abstract

In this paper, we introduce a practical modeling approach to im-
prove the quality of polygonal mesh structures. Our approach is
based on a discrete version of Gaussian-Bonnet theorem on piece-
wise planar manifold meshes and vertex angle deflections that de-
termines local geometric behavior. Based on discrete Gaussian-
Bonnet theorem, summation of angle deflections of all vertices is
independent of mesh structure and it depends on only the topol-
ogy of the mesh surface. Based on this result, it can be possible to
improve organization of mesh structure of a shape according to its
intended geometric structure.

1 Motivation

Most professional modelers in animation and special effect industry
slowly migrated subdivision surfaces. One of the crucial questions
for practical modeling with subdivision surfaces is to identify the
numbers and types of extraordinary vertices that needs to be used
for a successful modeling. In the first observation, this question
seems easy to answer based on genus of the goal surface. Using
Euler’s formula, we can compute the number of extraordinary ver-
tices and their valences (also the number of faces and their valences)
for the given genus.

However, extraordinary vertices do not result only from genus. In
most practical cases, we need to consider the geometrical structure
of the surface. Tree structures are especially the ones that cause
problems. Tree structures are more common than real trees. For
instance, even head of a human being can be considered genus-
1 tree that has at least 3 branches that include nose and 2 eyes.
The one hole come from digestive track that start from mouth. It
is possible to model the head as a genus-0 tree with at least four
branches by include mouth as a branch.

By relating topology and geometry, we give a framework to answer
such problems coming from practical modeling. Our results jus-
tify some of the intuitively developed practices in current modeling
approaches. For instance, the modelers introduce extraordinary ver-
tices to model eyes, nose and mouth in facial modeling. Our results
go further than and even defies common sense about subdivision
modeling. We show that despite the common belief the quality of
some surfaces can be improved by introducing extraordinary ver-
tices.

∗Corresponding Author: Program Coordinator, Visualization Sciences,
Department of Architecture, College of Architecture. Address: 418
Langford Center C, College Station, Texas 77843-3137. email: er-
gun@viz.tamu.edu. phone: +(979) 845-6599. fax: +(979) 845-4491.

2 Introduction

Our approach is based on the Gauss-Bonnet Theorem that says that
the integral of the Gaussian curvature over a closed smooth surface
is equal to 2π× the Euler characteristic of the surface which is 2−
2g [Weisstein 2005]. The theorem requires a smooth surface. In
this section, we provide a simple proof for Gauss-Bonnet Theorem
on Piecewise Linear Meshes.

2.1 Piecewise Linear Meshes

We say that a meshM is piecewise linearif every edge ofM is a
straight line segment, and every face ofM is planar. Piecewise lin-
ear meshes are useful since the surface of each face is well-defined
[Williams 1972]. Most common piecewise linear meshes are tri-
angular meshes. However, piecewise linear meshes are a signifi-
cant generalization of triangular meshes, which not only allow non-
triangular faces, but also allow faces to have different face valence.
In the discussion of the current paper, we will be focused on piece-
wise linear meshes.

We start by some intuitions. LetM be a piecewise linear mesh such
that all vertices ofM have the same vertex valencem and all faces
of M have the same face valencen (such a mesh is called aregular
mesh). Suppose thatM hasv vertices,e edges, andf faces. By
Euler Equation [Hoffmann 1989; Mantyla 1988],

v−e+ f = 2−2g (1)

whereg is the genus of the meshM and from the equalitiesnv=
m f = 2e, we derive

e=
nm(2−2g)

2n+2m−nm
, v =

2n(2−2g)
2n+2m−nm

, f =
2m(2−2g)

2n+2m−nm

We would like to generalize the above relations to piecewise linear
meshes that are not regular. For this, we introduce the following
definitions.

Definition Let M be a piecewise linear mesh, with vertex set
{µ1, . . . ,µv} and face set{φ1, . . . ,φ f }. Moreover, for eachi, 1≤ i≤
v, let mi be the valence of the vertexµi , and for eachj, 1≤ j ≤ f ,
let n j be the valence of the faceφ j . Then theaverage vertex valence
m and theaverage face valence nare defined, respectively, to be

m= (
v

∑
i=1

mi)/v and n = (
f

∑
j=1

n j )/ f

Note thatm andn are not necessarily integers.

Based on these new concepts, the numberv of vertices, the number
e of edges, and the numberf of faces in a piecewise linear mesh
can be given as functions in terms of the average vertex valence,
the average face valence, and the genus of the mesh, as shown in
the following lemma.



Lemma 2.1 Let M be a piecewise linear mesh. Suppose that M
has v vertices, e edges, f faces, and genus g. Let m and n be the
average vertex valence and average face valence, respectively, of
the mesh M, then

e=
nm(2−2g)

2n+2m−nm
, v =

2n(2−2g)
2n+2m−nm

, f =
2m(2−2g)

2n+2m−nm

PROOF. Suppose that the vertex set ofM is {µ1, . . . ,µv} and that
the face set ofM is {φ1, . . . ,φ f }. Moreover, suppose that for each
i, 1≤ i ≤ v, the vertexµi has valencemi , and that for eachj, 1≤
j ≤ f , the faceφ j has valencen j . Since each edge in the meshM
is used exactly twice in vertex valences and is used exactly twice in
face boundaries, we have

v

∑
i=1

mi =
f

∑
j=1

n j = 2e

On the other hand, by our definitions of the average vertex valence
m and the average face valencen, we have

mv=
v

∑
i=1

mi and n f =
f

∑
j=1

n j

Therefore, we still havemv= n f = 2e. Since the meshM has genus
g, Equation (1) holds. Combining Equation (1) and the equalities
mv= n f = 2e, we get immediately

e=
nm(2−2g)

2n+2m−nm
, v =

2n(2−2g)
2n+2m−nm

, f =
2m(2−2g)

2n+2m−nm

This proves the lemma.

2.2 Angle deflection at a vertex

To understand the local behavior around a vertex of a piecewise
linear meshes, angle deflection are great tools. Angle deflection at
a vertex are formally defined based on the corner angles around a
vertex, as follows.

Definition Let µi be a vertex on a piecewise linear meshM. The
angle deflectionat vertexµi is defined as

θ̄(µi) = 2π−
mi

∑
j=1

θ j

whereθ j is the internal angle of thej-th corner of vertexµi andmi
is the valence of the vertexµi .

The importance of angle deflections to describe local behavior
can be best understood by viewing developable sculptures [Koman
2005] of Sculptor Ilhan Koman. He created a set of sculptures
by forcing the total angle in a given point larger than 2π [Koman
2005]. As shown in Figure 1, when the angle goes beyond 2π, it is
possible to create a wide variety of saddle shapes. We observe that
Koman’s developable structures can give very useful information
about the local behavior at a vertex for piecewise linear meshes.

It is interesting to point out that the value of̄θ(µi) is somewhat
related to curvature and based on the values of corner angles around
the vertexµi . More precisely,

• θ̄(µi) > 0: then vertexµi is either convex or concave.

Figure 1: Ilhan Koman’s Developable Sculptures.

• θ̄(µi) = 0: then vertexµi is planar.

• θ̄(µi) < 0: then vertexµi is a saddle point.

The actual values for̄θ(µi) ≥ 0 are not particularly useful, they
simply tell how sharp is the convex or concave area. The upper
limit for positive values is 2π and it corresponds to the sharpest
convex or concave regions. For negative values there is no lower
limit. In addition, the actual value of the number gives information
about the type of saddle. Since there is no lower limit, saddle points
can be very wild, as it can be seen from Ilhan Koman’s sculpture in
Figure 2.

Figure 2: A close up view of Ilhan Koman’s highly complex Saddle
Sculpture.

This is not unexpected since the most popular discrete version of
Gaussian curvature introduced by Calladine for triangular meshes
uses angular deflection [Calladine 1983]. Calladine’s discrete



Gaussian curvature given as

Angular Deflection
Area Associated with Vertex

2.3 Sum of Angle Deflections

Here, we will give a simple proof of discrete version of Gauss-
Bonnet theorem asSum of angle deflections(SAD), given as fol-
lows.

Definition Let M be a piecewise linear mesh with a vertex set
{µ1, . . . ,µv}. Thesum of angle deflections(SAD) of the meshM is
defined as

θ̄(M) =
v

∑
i=1

θ̄(µi)

Note that the SAD of a piecewise linear mesh is closely related to
the geometric shape of the meshM. On the other hand, as we will
prove in the following theorem, the SAD of a mesh is a topological
invariant.

Theorem 2.2 Let M be a piecewise linear mesh of genus g. Then
the SADθ̄(M) of the mesh M is equal to2π(2−2g).

PROOF. Let {µ1, . . . ,µv}, {ε1, . . . ,εe}, and{φ1, . . . ,φ f } be the
vertex set, edge set, and face set of the meshM, respectively. More-
over, for eachi, 1≤ i ≤ v, let mi be the valence of the vertexµi , and
for each j, 1≤ j ≤ f , let n j be the valence of the faceφ j . Let m
andn be the average vertex valence and the average face valence,
respectively, of the meshM.

Consider each faceφ j of valencen j . Sinceφ j is a planar polygon,
the sumσ(φ j ) of inner angles ofφ j is equal to(n j −2)π. Adding
this up over all faces in the meshM, we obtain

f

∑
j=1

σ(φ j ) =
f

∑
j=1

(n j −2)π =

(
f

∑
j=1

n j −2 f

)
π = n fπ−2 f π (2)

where we have used the definition of the average face valencen =
(∑ f

j=1n j )/ f .

On the other hand, by the definition of angle deflections, the sum
of corner angles around each vertexµi of the meshM is equal to
2π− θ̄(µi). Adding this up over all vertices in the meshM, we get

v

∑
i=1

(2π− θ̄(µi)) = 2vπ− θ̄(M)

This value should be equal to the value in (2) since both of them are
the sum of the total corner angles in the meshM. Therefore, we get

θ̄(M) = 2vπ−n fπ +2 f π = 2π(v−n f/2+ f )

By the definition of the average face valencen = (∑ f
j=1n j )/ f , and

noticing that 2e = ∑ f
j=1n j , we get immediatelyn f/2 = e. This

gives
θ̄(M) = 2π(v−e+ f )

By Euler Equation (1), we get

θ̄(M) = 2π(2−2g)

This proves the theorem.

Theorem 2.2 is independent of the number of vertices, the number
of edges, the number of faces, and the average vertex and face va-
lences. It depends only on the genus of the piecewise linear mesh
M. As a result, any homeomorphic operation (operations that do
not change topology, in this case genus) that converts a piecewise
linear mesh to a new piecewise linear mesh does not change the
SAD of the mesh. In other words, the effect of a homeomorphic
operation on the SAD of a mesh will be zero, which means if we
gain angle deflections in some vertices, we will lose some angle
deflections in some other vertices. This is the important result for
practical polygonal mesh modeling.

2.4 Visual Intuition

To give a visual intuition about sum of angle deflections, we can re-
late it to critical points in Morse theory [Milnor 1963]. Consider the
3-D objects in Figure 3. The first two objects have genusg = 0, the
next two objects have genusg = 1, while the last object has genus
g = 2. If we assign+1 to each minima/maxima (convex/concave)
type critical point and−1 to each saddle type of critical point (as
marked in the figure), the total adds up to(2− 2g), as shown in
Figure 3.

Figure 3: The total adds up to(2−2g) if we assign minima/maxima
points+1 and saddles−1.

Figure 3 also give a visual explanation of the sum of angle deflec-
tions. In figure, we assume that all angle deflections occur only at
critical points. If that were really the case, the angle deflection in
each critical point would have been+2π for minima/maxima and
−2π for each saddle point. So, the total will be equal to 2π(2−2g),
which is the sum of angle deflections.

It is also clear from Figure 3 why branches do not change the total
angle deflections. Each branch induces the same numbers of saddle
points and maxima/minima points; so total effect becomes zero. On
the other hand, each handle (i.e., each hole) introduces two saddle
type critical points, which decreases the total angle deflections by
4π.

3 Homogenous Operations

For branch creations, professional modelers usually use extrusion
[Landreneau et al. 2005] and wrinkle operations (see Section 4).
These operations are homogenous, i.e. they do not change mesh
topology. Subdivision schemes, which are commonly used to create
smooth surfaces, are also homogenous operations.



To understand why homogenous operations do not change the to-
tal angle deflections, it is insightful to look at them from a mesh
topological point of view.

Let us assume that the number of faces, edges and vertices of a mesh
increase in each application of homogenous operations. Based on
this assumption, let us consider the practice in which when homoge-
nous operations are applied to a mesh while the genus of the mesh
stays the same, the numbers of faces, edges and vertices of the mesh
increase without a limit.

Remark 1. This is not an unrealistic assumption. In fact, all sub-
division schemes, extrusions and wrinkle operations increase the
number of faces, edges and vertices.

To analyze repeated applications of homogenous operations we can
again use the Euler equation. Let us consider specifically meshes
of genusg. Letn andmbe the average face valence and the average
vertex valence of a mesh of genus 1. Using Euler equation (1) and
equations in Lemma 2.1, we have

2−2g
e

=
2
m

+
2
n
−1

By our assumptione can be arbitrarily large but the mesh genus
stays the same, thus

2
m

+
2
n
−1≈ 0

which gives

m≈ 2n
n−2

Under the assumption thatm≥ 3 andn≥ 3, and replacing the above
approximation by an equality, we will get

3≤ n≤ 6

This result says that the average face valence cannot exceed 6 re-
gardless of what we do (if we do not allow valent-2 vertices and
polygons with two sides).

In other words, if our homogenous operations create only quadrilat-
eral faces (i.e.,n = 4), then the average vertex valencem goes to 4.
If the homogenous operations create only triangles (i.e.,n= 3), then
the average vertex valencem goes to 6. For pentagons (i.e.,n = 5),
the average vertex valence approaches to 10/3 and for hexagons
(i.e.,n = 6) it goes to 3. Any mixed use of different face types will
create a rational number for the average vertex valence.

This also explain why most subdivision schemes provide(3,6)
[Kobbelt 2000; Loop 1987],(4,4) [Doo and Sabin 1978; Catmull
and Clark 1978; Peters and Reif 1997; Sabin 2000] and(6,3) [Claes
et al. 2002; Oswald and Schröder 2003; Akleman and Srinivasan
November 2002] regular regions in which integer tuple(n,m) sat-
isfy the equation2

m + 2
n−1= 0. Note that in these subdivisions the

number of regular vertices and faces (i.e vertices with valencem
and faces with valencen) increases, while the number of extraordi-
nary vertices and faces stays the same in each iteration. As a result,
the regular regions dominate the mesh.

Remark 2.To guarantee that subdivided mesh is at leastG1 contin-
uous each face of subdivided mesh must approach a convex planar
surface. So, we can say that most subdivision surfaces consist of
piecewise linear approximations of curved faces. Piecewise linear
approximations usually are(3,6), (4,4) or (6,3) regular regions for
most subdivision schemes [Akleman et al. 2004].

4 Implications on Practical Modeling with
Homogenous Operations

Our results are particularly insightful for modeling better mesh
structures for surfaces that include branches. We do not create
branches only for modeling trees. Branches are important for mod-
eling and they are everywhere. Even a simple genus-0 human face
model must include branches such as eye sockets, nose and mouth.

Remark 3 With better mesh structures, we mean faces are convex
and as regular as possible. It is not always possible to make faces
regular. For instance, we cannot get an angle deflection larger than
π with regular convex faces. However, it is still possible to make
faces as regular as possible by using appropriate valence. For in-
stance, if we force the regular mesh structures such as(4,4), we
cannot avoid irregular faces.

By introducing saddle and minima/maxima type of critical points
we can obtain better mesh structure. In practice, that is what pro-
fessional modelers do very efficiently. Based on our results, it is
easy to introduce saddles and minima/maxima. If we use the same
type of faces, assuming that all the faces are almost regular, all we
have to do is to carefully control the valences of vertices. For in-
stance, if we work only with triangles, we have to choose 3, 4 and 5
valent vertices in places we want to obtain minima or maxima. For
saddle points, we have to choose valences of vertices larger than 6.
Based on how complicated we want to design a saddle point, we
can increase the valence.

Changing the valence can even improve the mesh structure of
genus-1 surfaces. The Figure 4 shows an example of mesh improve-
ment by decreasing and increasing valence in appropriate regions.

Top part is a Regular (4,4) Structure

A Non-Regular Another
Structure Non-Regular Structure

Figure 4: This example shows that introducing non-regular struc-
tures can improve the mesh structure even for a simple genus-1 sur-
face. See the thin quadrilaterals exists in regular(4,4) structure on
the left model. By increasing the valence of some vertices in sad-
dle region and decreasing the valence of some vertices in convex
region, release the tension and quadrilaterals look more regular.



For professional modeling quadrilateral modeling is a particularly
important. In quadrilateral modeling, for minima and maxima, we
have only one choice, 3 valence vertices. For saddles we can use
any valence higher than 4. Extrusions and wrinkle operations as
shown in Figures 5 and 6 introduce minima/maxima and saddle
points simultaneously and therefore, they are commonly by pro-
fessional modelers used to create branches.

Initial mesh Extrusion Operation and
Vertex Valences

Figure 5: Branch creation with extrusion operation. Before extru-
sion we have a quadrilateral with 4-valent vertices. After extrusion
4 vertices have 5 valence and another 4 vertices have 3 valence.
Average vertex valence added is 4.

5 Conclusions and Future Work

In this paper, we have introduced an approach to improve mesh
structures to use in practical modeling with homogenous opera-
tions. We show that vertex angle deflection can give a powerful
insight about local geometric behavior to professional modelers.
Based on a discrete version of Gauss-Bonnet theorem, we have
shown that it is be possible to improve the organization of mesh
structures of shapes according to their geometric structure.

Based on the results in this paper, it is possible to automatically
create a better mesh from a given mesh. We think that vertex angle
deflections can also be used to smooth the surfaces.

Despite the similarity, angle deflections are different than Gaus-
sian curvature and its discrete versions. For instance, unlike sum of
angle deflections, sum of discrete Gaussian Curvature may not be
equal to 2π(2−2g). Both Gaussian curvature and angle deflections
are rotation and translation invariant. However, Angle deflection is
also scale invariant which can make it useful for shape retrieval.

An unexpected result coming from vertex angle deflection is paper
folding. Since we know that the total angle will always stay con-
stant, we can shape papers simply using staples1. Using this insight,
we were able to shape papers intuitively. And we were able to cre-
ate a variety of paper sculptures. Figure 7 shows two examples of
paper sculptures we have created based on the insight coming from
our result.
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