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Abstract
Scalable storage systems where data is sharded across

many machines are now the norm for Web services as
their data has grown beyond what a single machine can
handle. Consistently reading data across different shards
requires transactional isolation for the reads. Yet a Web
service may read from its data store hundreds or thou-
sands of times for a single page load and must minimize
read latency to keep response times low. Examining the
read-only transaction algorithms for many recent aca-
demic and industrial scalable storage systems suggests
there is a tradeoff between their power—expressed as
the consistency they provide and their compatibility with
other types of transactions—and their latency.

We show that this tradeoff is fundamental by proving
the SNOW Theorem, an impossibility result that states
that no read-only transaction algorithm can provide both
the lowest latency and the highest power. We then use
the tight boundary from the theorem to guide the design
of new read-only transaction algorithms for two scalable
storage systems, COPS and Rococo. We implement our
new algorithms and then evaluate them to demonstrate
they provide lower latency for read-only transactions and
to understand their impact on overall throughput.

1 Introduction

Scalable data stores are a fundamental building block
of large-scale systems, such as modern Web services.
Spreading data across machines—i.e., sharding—allows
the system to scale its capacity and throughput, but also
complicates how programs and users interact with the
data. When all the data is on a single machine, consis-
tently updating that machine is sufficient to ensure reads
are consistent. When data is spread across machines,
consistently updating the data store is no longer sufficient
because reads to different shards will arrive at different
times and thus see different views of the data store.
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Consistently viewing data thus requires transactional
isolation, where reads to different shards either all ob-
serve a given update or none do. General transactions
provide isolation, but are heavyweight and complex, es-
pecially for transactions that do not update data. Thus,
it is common to have a special algorithm for read-only
transactions, which are transactions the system knows
will only read data. The importance of these read-only
transaction algorithms has been recognized by many re-
cent systems [5, 8, 11, 12, 14, 26, 27, 29, 31, 37, 38].

Read-only transaction algorithms ensure isolation, but
often incur overhead relative to simple inconsistent reads
of the same data. This overhead stems from extra rounds
of communication to find a consistent view, extra meta-
data to determine if a view is consistent, and/or blocking
operations until a consistent view is found. The overhead
of these algorithms is important because many real-world
workloads are dominated by reads and thus read perfor-
mance determines the performance of the overall system.
For instance, 99.8% of the operations for Facebook’s dis-
tributed data store TAO are reads [10]. The latency of
these reads is especially important because, as Facebook
has reported, “a single user request may result in thou-
sands of subqueries, with a critical path that is dozens of
subqueries long” [4].

This breadth of reads and especially the depth of se-
quential reads for a single page load make their latency
critical to the response times of the Web services. These
response times are aggressively optimized because they
affect user engagement and revenue [13, 24, 34]. Thus,
one way to improve upon existing scalable storage sys-
tems is to decrease the latency of their read-only transac-
tions. But instead of simply making them faster, we seek
to make them latency-optimal, i.e., as fast as possible.

When examining existing systems we were able to de-
rive latency-optimal read-only transaction algorithms for
some, but not all of them. Investigating the cause of this
dichotomy led us to discover a tradeoff between the la-
tency and the power of read-only transactions.

We prove this tradeoff is fundamental with the SNOW



Theorem, which states it is impossible for a read-only
transaction algorithm to provide all four desirable prop-
erties: Strict serializability, Non-blocking operations,
One-response from each shard, and compatibility with
conflicting Write transactions. The power-related prop-
erties are strict serializability—which is the strongest
form of consistency—and compatibility with conflict-
ing write transactions—which indicates what other types
of transactions are in the system. The latency-related
properties are non-blocking operations—which ensures
each shard immediately handles each read request—and
one response—which ensures a single round of messages
with the minimal amount of data.

The intuition of the proof is that when a transaction
with writes commits there is a point at every server
when the transaction becomes visible, but that the asyn-
chronous nature of the network allows read requests to
arrive before the transition on one server and after the
transition on another. To cope with this possibility, a
read-only transaction algorithm must either settle for
consistency weaker than strict serializability (S), block
some read requests to avoid the inconsistent interleaving
(N), coordinate and/or retry the reads (O), or preclude the
possibility of conflicting write transactions (W).

The SNOW Theorem is similar to the CAP Theo-
rem [9, 18] in that it helps system designers avoid try-
ing to achieve the impossible and identifies a fundamen-
tal choice they must make when designing their system.
In addition, we make the SNOW Theorem even more
useful by demonstrating what is possible. We show the
four properties are tight by describing algorithms that
provide each combination of them. We further tighten
this boundary by moving beyond considering the proper-
ties as binary to instead viewing them as spectrums. For
instance, we show that while strict serializability is im-
possible with the other three properties, an only-slightly
weaker consistency model we call process-ordered seri-
alizability is possible. We call algorithms that touch the
boundary of what is possible SNOW-optimal.

Using the lens of SNOW-optimality we can examine
scalable data stores to determine if and what room for
improvement in their read-only transactions exists. We
find room for improvement in many systems, and focus
in particular on two recent and quite different data stores,
COPS [26] and Rococo [29]. COPS is scalable, geo-
replicated, causally consistent, and has only read-only
transactions and single-key write operations. In con-
trast, Rococo is scalable, designed for a single datacenter,
strictly serializable, and has general transactions.

We present the design, implementation, and evaluation
of novel read-only transaction algorithms for COPS and
Rococo. We call the resulting systems COPS-SNOW and
Rococo-SNOW. The key insight common to the systems
is that to make reads as fast as possible we need to shift

as much coordination overhead as possible into writes.
Our evaluation of COPS-SNOW shows that it almost

always provides lower latency for read-only transactions
and improves latency more as contention increases at
the cost of lower overall throughput. Our evaluation
of Rococo-SNOW shows that it always achieves lower
latency for read-only transactions and has much higher
throughput in the high-contention online transaction pro-
cessing workloads Rococo is designed for, at the cost of
slightly lower throughput under low contention.

The contributions of this paper include:

• The SNOW Theorem, which proves there is a fun-
damental tradeoff between the power and latency of
read-only transaction algorithms. This paper also
contributes algorithms that show the tightness of the
SNOW Theorem and the precise boundary of what is
possible, which we characterize as SNOW-optimality.

• The design and implementation of novel read-only
transaction algorithms for both the COPS and Ro-
coco scalable data stores that are latency-optimal and
SNOW-optimal, respectively.

• Evaluations of COPS-SNOW and Rococo-SNOW that
explore their effect on the latency and throughput of
the systems under a variety of settings.

Section 2 presents necessary background and Sec-
tion 3 explains the SNOW properties. Section 4 gives
the statement and proof of the SNOW Theorem, shows
its tightness, and explores SNOW-optimality. The de-
signs of COPS-SNOW and Rococo-SNOW are presented
in Section 5 and then evaluated in Section 6. Section 7
discusses related work and Section 8 concludes.

2 Background

Web services are typically built using two distinct tiers of
machines: a frontend tier and a storage tier. The frontend
tier is stateless and handles requests from users by exe-
cuting application code that reads and writes data from
the stateful storage tier. The Web service is typically
replicated across multiple datacenters, but we restrict our
discussion here to a single datacenter for simplicity.1 The
storage tier shards its data across many machines.

Figure 1 shows how a simple page is generated in a
Web service. A frontend machine receives a request from
a user and then runs the application logic to generate her
page by reading data across many shards in the storage
tier. All of the reads must complete before the page can
be returned to the user. A typical page load issues hun-
dreds or thousands of reads [4]. Many of these reads can
be issued in a parallel batch like the reads of a and b.
However, some reads are dependent on earlier reads, i.e.,

1Our results are magnified in cross datacenter settings.
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Figure 1: Typical Web service architecture with a
frontend machine executing application logic to gen-
erate a page that reads data from the storage tier.

they read from keys that are returned by earlier reads. In
Figure 1 the read of z depends on the read of b that re-
turns z. Within a page load there are often chains of key
dependences that are dozens of reads deep [4].

Because of the breadth and especially depth of these
reads, providing low read latency is essential to enabling
fast page load times. In the rest of this paper we focus on
one-shot [20] read-only transactions that do not include
key dependences that cross shards. One-shot read-only
transactions can be issued in a single parallel batch, e.g.,
the reads of a and b. Following key dependences requires
multi-shot read-only transactions. We focus on one-shot
transactions because they are simpler to reason about and
their results generalize: what is not possible for one-shot
read-only transactions is also not possible for the more
general multi-shot read-only transactions.

In this paper we consider read-only transactions gener-
ally, but with the current motivation of application logic
on frontend machines consistently reading data from the
storage tier to generate pages. To match general termi-
nology on read-only transactions we call the frontend
machines the clients and the storage tier the servers.

3 The SNOW Properties

This section introduces the SNOW properties and ex-
plains their importance for read-only transactions.

3.1 Strict Serializability
Strict serializability ensures there exists a total order over
all the transactions in the system—i.e., transactions are
serializable—and their results appear to have come from
a single machine processing them one at a time [32].
This latter requirement ensures the total order respects
the real-time ordering of transactions [19]. That is, if
transaction t2 begins in real time after transaction t1 has
completed, then t2 will appear after t1 in the total order.

When two transactions are concurrent there is no real-
time ordering between them. For instance, if t4 begins
after t3 begins but before t3 has finished, then they are
concurrent and either could be ordered first in a legal
total order. The total order requirement of strict serial-
izability guarantees that transactions are fully isolated,
i.e., a transaction does not observe partial effects of other
transactions. Informally, the real-time ordering require-
ment of strict serializability guarantees a read-only trans-
action always returns the most recent values.

Strict serializability is the most desirable consistency
model because it provides the strongest guarantees. It
is easiest for programmers to write correct application
logic on top of a strictly serializable system, and it elim-
inates the most user-visible anomalies [28] compared to
other consistency models. Section 4.4 discusses weaker
consistency models.

3.2 Non-Blocking Operations
We define non-blocking operations to require that each
server can handle the operations within a read-only trans-
action without blocking for any external event. That is,
a process involved in handling a read-only transaction
never voluntarily relinquishes a processor. Blocking be-
haviors that are prohibited include waiting for a lock to
be available, waiting for messages from other servers,
waiting for messages from other clients, or waiting for
a timeout to fire. In contrast, non-blocking behavior en-
sures a server can immediately process and respond to
requests from clients. Non-blocking operations are de-
sirable because they directly relate to the latency of the
read-only transactions; they save at least the time that
would be spent blocking.

3.3 One Response Per Read
We define one response per read to be the combination of
one round-trip to each server and one version per read.
The one version subproperty requires that servers send
only one value for each read. The one round-trip sub-
property requires the client to send at most one request
to each server and the server to send at most one response
back. (This allows for zero messages to and from some
servers, for instance, if they do not store data being read.)

The one version subproperty aligns with the latency
of read-only transactions. If a server sends multiple ver-
sions of a value, that much more time is spent serializ-
ing, transmitting, and deserializing the values. The one
round-trip subproperty strongly aligns with the latency
of read-only transactions. For instance, an algorithm that
takes two round trips will take roughly twice as long in
transmission and queuing. This subproperty also disal-
lows algorithms that abort a transaction and then start



over, because starting over is another round trip. We ex-
plore multi-round algorithms further in Section 4.4.

The one response property is desirable because it leads
to faster read-only transactions. We call algorithms that
provide the one response and non-blocking properties
latency-optimal because they are as fast as possible: a
client sends a single request to each server, each server
handles the request immediately, and the servers send
back exactly the data the client wants to read.

3.4 Write Transactions that Conflict
We define the write transactions property as the abil-
ity of a read-only transaction algorithm to coexist with
conflicting transactions that update data. This requires,
first, that a data store allows transactions that update data.
General transactions that read and write data satisfy this
requirement, as do weaker write-only transactions that
only write data. This property also requires that write
transactions can conflict with read-only transactions, i.e.,
write transactions can update data spread across multiple
servers concurrently with read-only transactions viewing
that data. The ability to coexist with conflicting write
transactions is desirable because write transactions make
programming application logic much easier.

4 The SNOW Theorem

The SNOW Theorem is an impossibility result that states
no read-only transaction algorithm can provide all of the
SNOW properties. This section presents a proof of the
SNOW Theorem, discusses the tightness of the theorem,
defines SNOW-optimality, and discusses the spectrums
of related properties.

4.1 Models, Definitions, and Assumptions
System Model. Our system model is similar to that
used in FLP [16]. A distributed system is modeled by
a set of N processes, where N > 1. Processes communi-
cate by sending and receiving messages. A set of client
processes (machines) issue requests to the server pro-
cesses (machines), which store the data. System actions
are modeled as each process going through a sequence
of events, where an event is an atomic step of receiving
a message, doing local computation, and/or producing a
set of output messages.

Network Model. The SNOW Theorem holds for
the asynchronous network [18] and the partially syn-
chronous network [15] models. In an asynchronous net-
work, there are no physical clocks and messages between
processes can be arbitrarily delayed. In a partially syn-
chronous network, the message delay is bounded and

there is a bound on the drift rate between clocks at differ-
ent processors, but either the rates are not known apriori
or do not hold immediately. In the proof, we use an asyn-
chronous network for simplicity. We then discuss the
correctness of the SNOW Theorem under the partially
synchronous network model.

Definitions. A transaction is a set of operations that
read and/or update data. Clients group all operations that
are sent to the same server into a single request. The in-
vocation time of the transaction is the time when a client
process sends each request in the transaction to the in-
volved servers. The response time of the transaction is
the time when the client has received all the responses
from the servers.

Lamport’s happened-before relation [21] is the (small-
est) partial order such that “1) If a and b are events in the
same process, and a comes before b, then a→ b. 2) If
a is the sending of a message by one process and b is
the receipt of the same message by another process, then
a→ b. 3) If a→ b and b→ c then a→ c.”

We use the happened before relation to differentiate
between two server behaviors for handling read-only
transaction requests. Let r be the handling of a request
from a read-only transaction, R, on a server. A write
transaction, W, is unknown to r if the client that issued R
could not know about W when it issued the request and
the server handling the request could not know about R
until the request arrived. More formally, W is unknown
to r if Winv 9 Rinv and Rinv 9 e′, where e′ is the event
on server S that directly precedes r. The server handles r
with the default behavior if W is unknown to r.

Assumptions. We assume a reliable network, reliable
processors, and one-shot transactions. A reliable net-
work eventually delivers every message sent. Reliable
processors eventually receive and process every message
sent. One-shot transactions [20] require at most one re-
quest per server process, i.e., they do not use the out-
put of a request as part of the input of another request.2

These assumptions are not necessary as the SNOW The-
orem holds without them. Assuming them demonstrates
the strength of the impossibility result. We also use these
assumptions when characterizing what is possible (§4.3–
4.4) and categorizing related work (§7).

We also assume there are at least two server processes
and at least three client processes. These assumptions
are necessary for our proof. SNOW is possible with a
single server process or a single client process. It is an
open question if SNOW is possible when the system has
at least two server processes and exactly two client pro-
cesses.

2Equivalently, there are no cross-server key- or value-dependencies.
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Figure 2: The asynchronous nature of the network
allows one request in a read-only transaction to ar-
rive before a conflicting write transaction is visible
on one server, while another request arrives after the
write transaction becomes visible at a different server.
This requires read-only transactions to either settle
for weaker consistency (S), block some read requests
(N), coordinate and/or retry the reads (O), or pre-
clude conflicting write transactions (W).

4.2 SNOW is Impossible

The SNOW Theorem is an impossibility result that states
no read-only transaction algorithm can provide optimal
latency and the highest power. Providing optimal la-
tency requires providing the non-blocking (N) and one
response (O) properties. Providing the highest power re-
quires providing strict serializability (S) and being com-
patible with conflicting write transactions (W).

The intuition of the proof is that when a transaction
with writes commits, there is a point at every server when
the transaction becomes visible, i.e., newly arriving reads
will see its effect. However, the asynchronous nature of
the network allows read requests to arrive before the tran-
sition on one server and after the transition on another,
as shown in Figure 2. Turning this intuition into a proof,
however, turns out to be more complex. We prove the
SNOW Theorem by contradiction, i.e., we assume there
exists a read-only transaction with all of the SNOW prop-
erties and then eventually show this assumption leads to
a contradiction. First, we show that the default behav-
ior of servers must be to return a value, which we called
the “default” value (Lemma 1). Second, we show that
this default value must initially not expose an ongoing
write transaction (Lemma 2). Third, we show that this
default value must eventually expose that write transac-
tion (Lemma 3). Fourth, we show that this default value
must transition from not exposing the write transaction to

exposing it, at some point on each server (Corollary 4).
Finally, we prove the SNOW Theorem by constructing
an execution where two requests from a read-only trans-
action take the default behavior at two different servers,
with one request arriving before the transition and one
arriving after the transition.

The SNOW Theorem. No read-only transaction algo-
rithm provides all of the SNOW properties.

Proof. Assume to contradict that there exists a read-
only transaction algorithm with all of the SNOW proper-
ties. Consider a distributed system with at least the two
servers, SA and SB, and the three clients, CR, CR′ , and CW ,
that we assumed exist.

Let R be a read-only transaction issued by CR that
reads a from SA and b from SB. Let the first events that
happen on SA and SB as part of the read-only transaction
algorithm be ra and rb, respectively. Let W be a conflict-
ing write transaction that writes a = new and b = new.
Let the values of a and b before W is applied be old.

Lemma 1. The default behavior at servers returns val-
ues that are used by clients.

Proof. This follows directly from the non-blocking and
one response properties. �

Lemma 2. Servers initially return old by default.

Proof. R and W can be concurrent by the conflicting
write transaction property. ra can occur at Sa before any
event that happened after Winv by the concurrency of R
and W and the asynchronous network. ra can be the first
request in R to arrive at a server by the asynchronous net-
work. Then, by definition, ra is handled by default and
returns a value by Lemma 1. Sa cannot know of W be-
cause Winv 9 ra and so must return old. �

Lemma 3. Servers eventually return new by default.

Proof. Assume to contradict that servers never return new
by default. Let R be invoked after W returns at CW . R
must return a = new and b = new by strict serializability.
By assumption, Sa and Sb must have returned new by a
non-default behavior. Let ra be the first of the requests of
R to be handled by a server, by the asynchronous net-
work. Then the non-default behavior must have been
triggered by the receipt at CR of some message msee that
connects Winv→ Rinv.

Consider the execution up until the point where the
msee message is in the network. By the asynchronous net-
work we can deliver or delay messages arbitrarily. De-
lay all messages not explicitly mentioned and continue
that execution by delivering msee.3 Then deliver all mes-
sages for R, which must still see a = new and b = new

3This construction guards against write transaction algorithms that
explicitly notify all clients of their existence before completing.



because they are indistinguishable from the original ex-
ecution. Let R′ be a read-only transaction issued by CR′

that reads a from SA and b from SB that is invoked after
R returns. Deliver no messages to CR′ before it issues R′,
and deliver all of the messages in R′. Let r′a be the first
request in R′ delivered by the asynchronous network. By
definition r′a is handled by default, and by assumption
old must be returned. By strict serializability, old must
also be returned for b to R′. Thus, R′ reads a = old and
b = old even though it is invoked after R returns having
read a = new and b = new. This violates strict serializ-
ability and is our contradiction. �

Corollary 4. There exists a transition at each server be-
tween defaulting to old and defaulting to new.

Proof. This follows directly from Lemmas 2 and 3. �

Proof of the SNOW Theorem. Let tA and tB be the first
transitions from defaulting to old and defaulting to new
at SA and SB, respectively, that exist by Corollary 4. Let
tA happen first, without loss of generality. Deliver no
message to CR before R is invoked. Deliver ra immedi-
ately after tA and before rb. By definition, ra is handled
by default, and by being immediately after tA it must re-
turn new. Next, immediately deliver rb. By definition,
rb is handled by default. By being before tB, rb must re-
turn old. Thus, in this execution R returns a = new and
b = old. This violates strict serializability and is the con-
tradiction we needed to prove the SNOW Theorem. �

SNOW with Partial Synchrony. We have shown the
correctness of the SNOW Theorem for the asynchronous
network model. The theorem also holds for partially
synchronous networks because transforming bounds on
delay or clock drift into knowledge that can be used in
an algorithm requires blocking in proportion to those
bounds [15]. Lemma 2 still holds because ra may still
arrive before knowledge of W and would need to wait for
that knowledge to arrive to be able to return new, which
is not allowed because it is blocking. Lemma 3 also still
holds because eliminating the possibility of CR receiving
msee, then completing a read-only transaction, and then
CR′ completing a read-only transaction before receiving
any messages would require waiting out bounds. That
waiting would have to be on the read path of either CR
and/or CR′ , which is not allowed because it is blocking.

4.3 Tightness and SNOW-Optimality
We demonstrate the tightness of the SNOW Theorem
by showing that every combination of three out of the
four SNOW properties is possible. That is, there exists
read-only transaction algorithms that satisfy S+O+W,
N+O+W, S+N+W, and S+N+O.

Rococo-SNOW, one of the algorithms we will dis-
cuss later in this paper, is S+O+W. It is a blocking al-
gorithm but is compatible with stronger transaction se-
mantics, i.e., write-only transactions and general trans-
actions. Algorithms that provide multi-object snap-
shots in the past are often N+O+W algorithms. For
instance, Spanner [11]’s snapshot reads API that is se-
rializable. MySQL Cluster [31] also uses a N+O+W
algorithm while providing read committed consistency.
These algorithms favor low latency over the isolation
and/or recency of strict serializability. Eiger [27]’s read-
only transaction algorithm is S+N+W, as it uses multiple
rounds to make the write transaction known to all reads.

We designed a novel algorithm for COPS, COPS-DW,
that satisfies S+N+O by making all simple write oper-
ations go through a distinguished writer. The distin-
guished writer totally orders the writes. In addition,
when each write commits, the distinguished writer com-
putes a consistent snapshot for concurrent or later read-
only transactions to return. This algorithm is of theoreti-
cal interest only and is not practical because it serializes
all writes. It remains open whether there exists practical
S+N+O algorithms. These algorithms demonstrate the
tightness of the SNOW Theorem, that is, the four SNOW
properties are the minimal set of properties that make co-
existence impossible.

Given that the SNOW Theorem is tight, we define a
read-only transaction algorithm to be SNOW-optimal if
its properties sit on the boundary of the SNOW Theorem,
i.e., it achieves three out of the four SNOW properties.
In the four different combinations of SNOW-optimality,
S+N+O and N+O+W favor the performance of read-only
transactions since non-blocking and one response lead to
low latency. We call algorithms that satisfy N+O latency-
optimal. In contrast, property combinations S+O+W and
S+N+W lean towards the power of read-only transac-
tions as they provide the strongest consistency guarantee
and compatibility with conflicting write transactions.

4.4 Spectrums of Properties
To fully understand what we can learn from the SNOW
Theorem, we further tighten the boundary on what is pos-
sible by moving beyond considering the one response
and strict serializability properties as binary to viewing
them as spectrums.

If the one response property is sacrificed, then how
many rounds of messages are sufficient for the rest of the
properties to hold?

By examining the systems we have found, existing
read-only transaction algorithms range from at most
three rounds of messages (Eiger) to an unbounded num-
ber of rounds of messages. It is currently open if there
exist S+N+W algorithms with at most two rounds.



If the strict serializability property is sacrificed, then
what is the next strongest consistency model an algo-
rithm can achieve if the other three properties hold?

Process-ordered serializability is a consistency model
slightly weaker than strict serializability that is effec-
tively the combination of serializability and sequential
consistency [22]. It requires that there exists a legal to-
tal ordering over all operations in the system, provides
transactional isolation, and guarantees that the legal total
order agrees with each process’s ordering of its own op-
erations. It is weaker than strict serializability in that it
does not necessarily return the most recent values across
processes. We designed a novel algorithm we call Eiger-
PS for the Eiger data store. Eiger-PS satisfies N+O+W,
while providing process-ordered serializability.

The key idea of the read-only transaction algorithm
of Eiger-PS is for each client to maintain a serializable
view of the system and to only move to a new view when
it is certain that the new view contains that client’s most
recent write. We accomplish this by having each client
maintain a global safe time, GST, which is the latest log-
ical time at which no server is holding a pending write
transaction. The GST is maintained by each client pe-
riodically requesting from every server their local safe
time, which is the latest time on the server with no in-
progress write transactions. The client then only reads at
its GST, which provides serializability in Eiger [27]. To
achieve process-ordered serializability, each client must
see its most recent write. Reading at the GST will not
necessarily guarantee that the client sees its most recent
write as the client may not have updated its GST since the
commit of the last write transaction. Thus, we have each
write transaction wait to return until the writing client’s
GST exceeds the logical commit time of the write trans-
action. This does not provide strict serializability be-
cause a client may not see the most recent write com-
mitted by another client.

Because process-ordered serializability is possible, all
of the consistency models that are weaker than process-
ordered serializability are also able to coexist with the
other three properties. For instance, some weaker consis-
tency models include serializability, causal consistency,
snapshot isolation, parallel snapshot isolation, and read
committed. That is, with all of these weaker forms of
consistency, a read-only transaction algorithm can pro-
vide N+O+W.

5 Read-Only Transaction Designs

This section explores how to use SNOW-optimality as a
lens to examine existing algorithms, our common insight
in deriving SNOW-optimal algorithms, and the designs
of COPS-SNOW and Rococo-SNOW that integrate new
read-only transaction algorithms.

5.1 Exploring Improvements with SNOW
SNOW-optimality is a powerful lens with which to ex-
amine the design of read-only transaction algorithms. If
an algorithm is already SNOW-optimal, then we cannot
improve it without making a different choice in the trade-
off between latency and power. If an algorithm is not
SNOW-optimal, however, we know that it is possible to
improve it without making a different design choice.

Any algorithm that is not SNOW-optimal has at most
two of the SNOW properties. We improve upon such
algorithms by keeping the SNOW properties they pro-
vide and adding at least one of the latency-related prop-
erties. We do not add strict serializability or compatibil-
ity with conflicting write transactions because doing so
would change the base system into something new.

The COPS distributed data store has a non-blocking
algorithm for its read-only transactions and we designed
a new non-blocking and one response algorithm. The
new COPS-SNOW algorithm is latency-optimal, but not
SNOW-optimal because it is neither strictly serializable
nor compatible with write transactions. The Rococo dis-
tributed data store has a read-only transaction algorithm
that is strictly serializable and compatible with conflict-
ing writes. We designed a new algorithm that adds the
one response property. The new Rococo-SNOW algo-
rithm is SNOW-optimal but not latency-optimal.

In addition to helping us discover systems whose algo-
rithms we can improve, the SNOW Theorem also helps
us avoid trying to improve systems that we cannot. Some
of the distributed data stores we examined were already
SNOW-optimal and so we knew it would be impossible
to improve them. For instance, Spanner [11] is SNOW-
optimal because it has a strictly serializable, one round
read-only transaction algorithm that is compatible with
conflicting write transactions. Section 7 discusses more
systems that are already SNOW-optimal.

5.2 Common Insight for Optimal Reads
After identifying if and how we can improve upon the
read-only transaction algorithm in existing systems, we
need to design algorithms that realize that improvement.
We have found one common insight in our new algo-
rithms that we think will be useful in deriving other
SNOW-optimal algorithms. This key insight is to make
reads cheaper by making writes more expensive.

Instead of blocking reads, block writes. Instead of re-
quiring extra rounds of communication for reads, require
them for writes. Shifting the burden to writes will al-
ways improve the individual performance of reads. But
for the read-heavy workloads that are common for Web
services, such a design can also improve overall perfor-
mance because it diminishes a minority of the workload
to improve the majority of it.
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Figure 3: Ensuring causal consistency for a private photo that is updated after setting the ACL to private. COPS
takes two rounds of requests (r1,r2 then r1′ ) while COPS-SNOW takes only one round to ensure consistency.

5.3 COPS-SNOW Design

This subsection describes the COPS system and our new
read-only transaction algorithm for it.

COPS Overview. COPS is a scalable, geo-replicated
storage system where each replica (datacenter) contains
a full copy of the data sharded across many machines.
COPS has single-key write operations and does not have
write transactions. Each datacenter accepts writes lo-
cally and then replicates them to remote datacenters with
metadata that indicates their causal dependencies. Re-
mote datacenters check that the write’s causal dependen-
cies are satisfied before applying the write. This ensures
that the data spread across many shards in each replica is
always causally consistent [3, 21]. COPS has read-only
transactions that are handled entirely locally in a replica
and provide a causally consistent view of the data store.
For the rest of our discussion of COPS we focus on its
operations within a single datacenter, but our results ap-
ply equally in the geo-replicated setting.

The original read-only transaction algorithm in COPS
is causally consistent, non-blocking, two rounds, and is
not compatible with write transactions. COPS read-only
transactions begin when application logic invokes a read-
only transaction that includes the full list of keys the
client wants to read. The client then sends out a first
round of read requests to each shard that has data in
the transaction. Servers respond with their current value
for the data along with the causal dependencies of each
value. After the first round the client checks to see if
all of the returned values are mutually consistent. Each
causal dependency that is returned with a read is a con-
straint on other values in the system, e.g., b1 depends on
a1 means that if a client observes b1 it must also observe
a1 or an even later version of a (if it reads a). If all of the
dependencies of all the values returned in the first round
are satisfied, then COPS returns the values to the applica-
tion logic after a single round. If, however, not all of the

dependencies are satisfied, then COPS issues a second
round of read requests for each value that does not satisfy
other values’ dependencies. COPS requests the specific
versions of keys that are depended upon, e.g., if a0 and
b1 are returned in the first round then a1 will be requested
in the second round. Requesting these specific versions
guarantees COPS will complete in two rounds because
these versions satisfy current dependencies. In addition,
these specific versions do not introduce any new depen-
dencies because, by the definition of causality, their de-
pendencies are a subset of the dependencies of values
that depend upon them, e.g., a1’s dependencies are a sub-
set of b1’s.

COPS-SNOW Algorithm. We improve COPS with
a new latency-optimal read-only transaction algorithm.
Our COPS-SNOW algorithm keeps the power properties
of the current algorithm: it provides causal consistency
and is not compatible with conflicting write transactions.
It is latency-optimal because it keeps the non-blocking
property of the current algorithm and adds the one re-
sponse property. Following our common insight we shift
the complexity from the reads to the writes in COPS.
More specifically, we shift the consistency check and
second round fetch of consistent values from the read-
only transaction algorithm into the write algorithm.

In COPS a second-round read is needed if and only if
one part of the read-only transaction ra does not see a
write wa1 and another part of the read-only transaction rb
does see a write wb1 that is causally after wa1. Figure 3a
shows this in action with COPS using the canonical ac-
cess control list (ACL) and photo example where an al-
bum is switched to private (wa1) and then a private photo
is added (wb1). In this example, COPS will send a new
read r1′ that will see write wa1 and return the consistent
set of the private ACL and Album.

Our new algorithm flips this responsibility by having
a write check if any of its causal dependencies have not
been observed by an ongoing read-only transaction. If



1 Client Side
2 function read_only_txn(<keys>):
3 trans_id = generate_uuid()
4 vals, deps = []
5 for k in keys # in parallel
6 vals[k], deps = read_txn(k, trans_id)
7 # update causal dependencies
8 return vals
9

10 function write(key, val):
11 old_deps = get_deps()
12 new_dep = write(key, val, old_deps)
13 # update causal dependencies
14 return
15

16 Server Side
17 function read_txn(key, trans_id):
18 if trans_id in old_rdrs[key]
19 time = old_rdrs[key][trans_id]
20 return val = read_at_time(key, time)
21 curr_rdrs[key].append(trans_id,
22 logical_time.now())
23 return read(key)
24

25 function write(key, val, deps):
26 for d in deps # in parallel
27 old_rs = check_dep(d)
28 old_rdrs[key].append(old_rs)
29 old_rdrs[key].append(curr_rdrs[key])
30 curr_rdrs[key].clear()
31 write(key, val)
32 # calculate causal dep for this write
33 return new_dep
34

35 function check_dep(dep)
36 # normal causal dependency check
37 return old_rdrs[dep.key]

Figure 4: Pseudocode for COPS-SNOW.

any of those causal dependencies were not observed by
a read-only transaction then this write should not be ob-
served by it either, so the write updates metadata encod-
ing that. Figure 3b shows our new algorithm in action on
the same example. COPS-SNOW returns the consistent
set of the public ACL and Album.

Figure 4 shows the pseudocode for COPS-SNOW. On
the client side writes are the same as in COPS, and read-
only transactions are similar but simpler because they re-
turn the values from the first and only round. On the
server side there are five high-level changes relative to
COPS: two changes to reads, two to writes, and one to
dependency checks.

The first change to reads is that they check to see if
their enclosing transactions are listed in the old readers
data structure (old rdrs) and if so return an older, con-

sistent value. The second change to reads is that they
are recorded as observing the current value in the cur-
rent readers data structure (curr rdrs). This enables
writes that overwrite the value to record which read-only
transactions did not see them.

The first change to writes is that they do dependency
checks to see if any of their causal dependencies over-
wrote values that a read-only transaction observed. If so,
the write records in the old readers data structure that
those read-only transactions should see older values to
be consistent. The second change to writes is that they
record any read-only transactions that observed the value
they overwrote by copying the current readers data struc-
ture into the old readers data structure. The change to
dependency checks is that they return the set of read-
only transactions that did not see a causally dependent
update. The combination of changes to writes enables
this. Adding reads of the overwritten values captures
reads that did not observe this write. Adding reads that
did not see this write’s causal dependencies—which also
did dependency checks that added their causal dependen-
cies, and so on—captures the transitive closure of this
write’s dependencies.

For clarity the pseudocode excludes logic related to
updating causal dependencies; grouping reads to keys
that are stored on the same server; updating Lamport
clocks; and storing, reading, and garbage-collecting old
versions. All of this logic is similar to what COPS does,
and is identical to what Eiger does.

5.4 Rococo-SNOW Design

This subsection describes the Rococo system and our
new read-only transaction algorithm for it.

Rococo Overview. Rococo is a strictly serializable,
distributed data store with general transactions [29]. Ro-
coco was designed primarily for the single datacenter set-
ting we consider here. Rococo introduced a new concur-
rent control algorithm that outperforms traditional con-
currency control algorithms under high contention work-
loads by reordering conflicting transactions instead of
aborting them. Rococo requires the transactions that
it executes to be chopped into pieces and analyzed for
safety before the system is deployed. Each transaction
is chopped into pieces that execute on shards as stored
procedures. For instance, to increment keys a and b that
are stored in different shards, Rococo would have a piece
for a that invokes the increment stored procedure server-
side and a separate piece for b that invokes the increment
stored procedure server-side. Rococo analyzes the pieces
of transactions to ensure that if they conflict at run time
it will be able to safely reorder them.



Rococo’s general transactions operate in three phases
run by a coordinator. The first phase distributes pieces
of the transaction to the appropriate shards and deter-
mines all directly conflicting transactions. The second
phase ensures all shards have the same metadata about
directly conflicting transactions. The third phase, which
can often be skipped, ensures all shards have the same
metadata about transitively (but not directly) conflicting
transactions. After the second or third phase each shard
deterministically orders all conflicting transactions and
then executes them in that order.

The original read-only transaction algorithm in Ro-
coco is strictly serializable, blocking, multi-round, and
compatible with conflicting write transactions. It takes
two rounds in the best case and an infinite number of
rounds in the worst case. In the first round the coordi-
nator sends read requests to each involved shard. Those
read requests block until after the execution of all con-
flicting transactions that started at that shard before this
read arrived. The second round is identical, and Ro-
coco considers the read-only transaction successful only
if both rounds read the same values. If not, Rococo will
continue issuing another round of reads until two consec-
utive rounds return the same results. This algorithm en-
sures strict serializability for the reads because it ensures
they are totally ordered relative to all conflicting transac-
tions. Waiting for all conflicting transactions to execute
at a shard before returning in the first round ensures those
transactions will have at least started at all other involved
shards before the second-round read arrives. Thus, if a
read-only transaction is not fully ordered before or after
a write transaction, it will see different results and con-
tinue trying.

Rococo-SNOW Algorithm. We improve Rococo with
a new SNOW-optimal read-only transaction algorithm.
Our Rococo-SNOW algorithm keeps the power proper-
ties of the current algorithm: it provides strict serializ-
ability and is compatible with conflicting write transac-
tions. It also adds the one response property to these,
which makes it SNOW-optimal. It is not latency-optimal
because it blocks, which we know is unavoidable. Fol-
lowing our common insight we shift the complexity from
reads into the commit algorithm of Rococo.

Due to space limitations, we only briefly describe our
new algorithm and omit its pseudocode. It is concep-
tually similar to the COPS-SNOW algorithm in that it
tracks whenever a value is read by a read-only trans-
action and then propagates the knowledge of that to all
other servers where that ordering is important. In Ro-
coco the second round (and additional rounds after that)
are necessary to protect against the case where one part
of a read-only transaction does not see a write transaction
but another part does. Our new algorithm ensures this

case never occurs by blocking each piece of a read-only
transaction until all conflicting write transactions have
executed at that shard. Rococo’s commit algorithm en-
sures that each piece of a transaction has knowledge of
the transitive closure of all conflicting transactions. We
piggyback the knowledge of read-only transaction pieces
that did not see any of the transitive closure of conflicting
transactions into that commit algorithm.

If a different piece of the read-only transaction did not
see a conflicting write transaction, then this shard will
know about that through the commit algorithm before it
unblocks this piece of the read-only transaction. Thus,
the shard will know whether to return an old state or the
most recent state when it executes the read-only transac-
tion piece. When the coordinator receives replies from
all involved shards, it knows the results are consistent
and thus returns them to the application logic.

6 Evaluation

We experimentally evaluate COPS-SNOW and Rococo-
SNOW to understand how their latency and throughput
compare to the original COPS and Rococo under a vari-
ety of settings. The evaluation shows that both COPS-
SNOW and Rococo-SNOW achieve lower latency for
read-only transactions. COPS-SNOW achieves this at
the cost of lower system throughput. Rococo-SNOW has
slightly lower throughput than Rococo under low con-
tention but actually achieves much higher throughput in
the high-contention settings Rococo was designed for.

6.1 COPS-SNOW

Implementation. We implemented COPS-SNOW as
a modification to Eiger [27], the successor to COPS.
Eiger provides the same level of consistency guarantees
as COPS, adds support for write-only transactions, sup-
ports a richer data model, and has a read-only transaction
algorithm based on logical time instead of causal depen-
dencies. We disable Eiger’s write-only transactions to
change it to a COPS-like mode where it has an at most
two-round read-only transaction algorithm. This allows
Eiger to propagate and store far fewer dependencies than
COPS and makes its read-only transaction algorithm far
more efficient. For this reason, we implement on top
of Eiger: we are comparing to the state-of-the-art read-
only transaction algorithm for causally-consistent sys-
tems without compatibility with write transactions. We
refer to this baseline as COPS throughout the evaluation.
This implementation is available publicly on GitHub.4

4https://github.com/USC-NSL/COPS-SNOW

https://github.com/USC-NSL/COPS-SNOW
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(c) Normalized throughput

Figure 5: Latency and throughput for COPS-SNOW and COPS for varying fractions of writes in the workload.
The latency graphs show the median latency for read-only transactions. Throughput graphs show the overall
throughput of the cluster.

Testbed, Bottleneck Resource, and Trials. We tried
to match our experimental setup to that of Eiger’s as
much as possible. We ran all the experiments on the
PRObE Nome testbed [17]. (Some of Eiger’s experi-
ments were run on Nome’s predecessor Kodiak.) Each
Nome machine has four Quad-Core AMD Opteron 2.2
GHz CPUs, 32 GB RAM, and two network interfaces:
one 1 Gbps Ethernet and one 20 Gbps Infiniband. All
COPS-SNOW experiments were run on a 20 Gbps Infini-
band network, which matches the network configuration
Eiger used. Due to inefficient thread scheduling within
Cassandra, upon which Eiger is based, one instance can-
not saturate all 16 cores on a physical machine. To make
a fair baseline for comparison, we run two instances on
each node so we can saturate one of the machine’s re-
sources. For all experiments the bottleneck is network
interrupt processing. We ran 15 trials for each experi-
ment and report the median. Each trial lasted at least 90
seconds with the first and last quarter excluded to avoid
artifacts due to warm up, cool down, and imperfectly
synchronized clients.

Configuration and Workloads. We evaluate COPS-
SNOW using two logical datacenters that are physically
co-located in the testbed with eight server machines each.
We use 16 client machines to load the servers in one of
the logical datacenters. (Our throughput disadvantage
would decrease as client load shifted to be more evenly
distributed across the datacenters.) We use the dynamic
workload generator from Eiger with Zipfian traffic gen-
eration using these parameters:

Parameter Default Range
Value Size (B) 128
Cols/Key 5
Keys/Operation 5 5 – 32
Write Fraction 0.1 0.01 – 0.5
Zipfian Constant 0.8 0.7 – 0.99

The default parameters match the defaults in Eiger’s
evaluation and we choose 0.8 as the default Zipfian con-
stant because it provides moderate skew. For a write of
5 – 32 keys we send out 5 – 32 parallel, unrelated indi-
vidual write operations. We explore how the throughput
of COPS-SNOW compares to COPS under a variety of
settings shown by the ranges of parameters we explore.

Performance with Varying Write Fraction. Figure 5
shows the latency and throughput of COPS-SNOW and
COPS as we increase the number of closed-loop client
threads on each client machine. Figure 5a shows the la-
tency with a write fraction of 0.1. In this setting, there
are enough writes to require COPS to sometimes go to
the second round of its algorithm and COPS-SNOW has
a slight latency advantage.

Figure 5b shows the median latency of COPS-SNOW
normalized against that of COPS for a variety of write
fractions. When the write fraction is very low at 0.01,
there are so few writes that all of COPS’s read-only trans-
actions take only one round and have similar latency to
COPS-SNOW. When the number of closed-loop client
threads is high, sometimes the latency of COPS-SNOW
is actually higher than that of COPS because the systems
are overloaded. This overload is outside the model we
considered in this paper, which we believe is reasonable
because overload is outside of the normal range of sys-
tem operations. Exploring the affect of overload on la-
tency is an interesting avenue of future work.

The larger result from Figure 5b is that the latency im-
provement of COPS-SNOW increases as the write frac-
tion increases. It is substantial when the write fraction is
close to 0.3. The rest of the experiments use the default
0.1 fraction. If they used a higher write fraction their la-
tency results would be more pronounced and if they used
a smaller write fraction their latency results would be less
pronounced.

Figure 5c shows the throughput of the cluster in the
same settings. Here we see that COPS-SNOW is trading
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(c) Normalized throughput

Figure 6: Latency and throughput for COPS-SNOW and COPS for varying levels of skew in the workload.
Latency graphs show the median latency for read-only transactions. Throughput graphs show the overall
throughput of the cluster.

away throughput for lower latency for read-only trans-
actions. This loss in throughput comes from the extra
messages in the write algorithm in COPS-SNOW.

Performance with Varying Keys per Operation.
Due to space constraints, we omit the figure showing the
throughput and latency of COPS-SNOW and COPS for
a varying number of operations in each transaction. Our
results show that COPS-SNOW has a latency advantage
that increases as read-only transactions increase in size
because the read-only transactions in COPS are more
likely to go to the second round. It also shows that the
throughput of COPS-SNOW becomes worse relative to
COPS as read-only transactions become larger because
each write has more causal dependencies to check.

Performance with Varying Levels of Skew. Figure 6
shows the latency and throughput of COPS-SNOW and
COPS for varying levels of skew in the workload. Fig-
ure 6a shows the latency of read-only transactions when
the skew is moderate with a Zipfian constant of 0.9.
COPS-SNOW has a latency advantage over COPS be-
cause there is moderate contention in the workload and
COPS sometimes needs a second round for reads. Fig-
ure 6b shows that COPS-SNOW has an increasing la-
tency advantage as the workload becomes more skewed
as long as the systems are not overloaded. Figure 6c
shows that the throughput disadvantage of COPS-SNOW
decreases slightly as the workload becomes more skewed
and the extra RPCs in the write algorithm of COPS-
SNOW are offset by the extra RPCs in the second round
of read-only transaction in COPS.

6.2 Rococo-SNOW

Implementation. We implemented Rococo-SNOW as
a modification to Rococo’s code base. We converted Ro-
coco from a single-version to a multi-version system to

support our read-only transactions and replaced its read-
only transaction logic with our new algorithm. This im-
plementation is available publicly on GitHub.5

Testbed, Bottleneck Resource, and Trials. We tried
to match our experimental setup to that of Rococo’s as
much as possible. We ran all the experiment on the
PRObE Nome testbed. (All of Rococo’s experiments
were run on Nome’s predecessor Kodiak, which has been
decommissioned.) The machines’ specifications are the
same as they were for COPS-SNOW with two excep-
tions. First, we use the Ethernet network interface in-
stead of the Infiniband interface to match the setup from
Rococo’s evaluation (the network is never a bottleneck).
Second, Rococo is single-threaded and used only one
core in its evaluation so we run one Rococo process per
machine, which only uses one of the cores. This core is
always the bottleneck. The rest of our experiment set-
tings were identical to what were used in Rococo, e.g.,
each trial lasted at least 60 seconds with first and last
quarter excluded to avoid artifacts due to warm up, cool
down, and imperfectly synchronized clients.

Configuration and Workload. We evaluate Rococo-
SNOW using 8 server machines and 16 client machines.
We evaluate using Rococo’s district-sharded TPC-C with
all parameters matching Rococo’s evaluation [29].

TPC-C Throughput and Read-only Transactions.
Figure 7 shows the performance of Rococo-SNOW, Ro-
coco, 2PL, and OCC as load and contention are increas-
ing by increasing the number of concurrent requests per
server in the system. The throughput for the (read-write)
new order transaction is shown in Figure 7a. The TPC-C
benchmark requires a specific mix of its five transaction
types, so this throughput is proportional to the through-
put of each type of transaction. Our results for Rococo,

5https://github.com/USC-NSL/Rococo-SNOW

https://github.com/USC-NSL/Rococo-SNOW
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(c) Stock level commit rate

Figure 7: Rococo-SNOW performance with Rococo’s TPC-C benchmark. The throughput of new order trans-
actions is shown, which is proportional to the throughput of all transactions. The median latency and commit
rate of the read-only stock level transactions are shown.

2PL, and OCC, match what was observed in Rococo’s
evaluation. We see that Rococo-SNOW provides lower
peak throughput than Rococo. This is because with so
few requests per server there is low contention and Ro-
coco’s read-only transactions rarely “abort” (i.e., must
continue to another round), while Rococo-SNOW makes
the write algorithm more complex. Once contention in-
creases to a moderate level with 30 requests/server, the
throughput of Rococo-SNOW matches that of Rococo
and then starts to exceed it. In the high-contention work-
loads that Rococo was designed for, Rococo-SNOW ac-
tually has much higher throughput. This is because
Rococo-SNOW’s read-only transactions always succeed
after a single blocking round, while Rococo’s read-only
transactions often have to retry many times when con-
tention is high.

Figure 7b shows the latency of the read-only stock
level transactions, which shows that Rococo-SNOW pro-
vides much lower latency than Rococo. Figure 7c shows
the “commit” rate of stock level transactions. The low
commit rate for these read-only transactions makes them
the bottleneck for Rococo under high contention, even
though all of Rococo’s read-write transactions have a
commit rate of 100% (not shown).

7 Related Work

This section reviews existing read-only transactions and
discusses other impossibility results.

Existing Read-Only Transactions. Figure 8 catego-
rizes many recent systems with read-only transaction al-
gorithms according to the SNOW properties. Some like
Yesquel [1], MySQL Cluster [31], and Spanner [11]’s
snapshot reads API are SNOW-optimal and latency-
optimal. To be optimal in both the systems must give up
one of the power related properties, and all of the three
systems give up strict serializability. Spanner’s snapshot
reads API provides a serializable (but potentially stale)

snaphot over the data. Yesquel provides snapshot isola-
tion, which is slightly weaker. MySQL Cluster provides
the yet weaker read-committed consistency model.

Many systems are SNOW-optimal but not latency-
optimal. These systems made a different design choice
and give up a latency related property to be as power-
ful as possible. One system, Eiger [27], has a bound
on the number of rounds needed for read-only trans-
actions. Other non-blocking SNOW-optimal systems
have an unbounded number of rounds. These include
DrTM [37], RIFL [23], and Sinfonia [2]. The unbounded
number of rounds typically comes from algorithms that
can abort, e.g., those based on optimistic concurrency
control. Rococo-SNOW is a different flavor of SNOW-
optimal because it is blocking, as is the algorithm of
Spanner-RO [11], which is Spanner’s strictly serializable
read-only transaction API.

Finally, many systems are neither SNOW-optimal nor
latency-optimal. This suggests there is room for im-
provement in the latency of their read-only transaction
algorithms without making a fundamentally different de-
sign choice. COPS [26] and Rococo [29] fall into this
category, which is the primary reason we developed new
algorithms for them. Walter [35], Orbe [14], Chain-
Reaction [5], Calvin [36], RAMP [8], Granola [12],
TAPIR [38], and Janus [30] also fall in this category and
are strong candidates for improvement.

Impossibility Results. Our work is inspired by other
impossibility results. The FLP result proves that in a
deterministic asynchronous system distributed processes
cannot always achieve consensus if even one process can
be faulty [16]. FLP is a different type of impossibility
result than SNOW because it states a liveness property
cannot always be satisfied: it is impossible to guarantee
a good thing (consensus) will always eventually happen.
In practice, however, consensus despite multiple faulty
processes happens regularly. The SNOW theorem, on
the other hand, states a safety property cannot always be



System S N O W

SNOW-optimal and latency-optimal

Spanner-Snap [11]* Ser X X X
Yesquel [1] SI X X X
MySQL Cluster [31]* RC X X X

SNOW-optimal

Eiger [27]* X X ≤ 3 X
DrTM [37]* X X ≥ 1 X
RIFL [23] X X ≥ 2 X
Sinfonia [2] X X ≥ 2 X
Spanner-RO [11]* X × X X
Rococo-SNOW* X × X X

Latency-optimal

COPS-SNOW* Causal X X ×

Neither SNOW-optimal nor latency-optimal

Janus [30] X × ≤ 2 X
Calvin [36] X × 2 X
Rococo [29]* X × ≥ 1 X
TAPIR [38]* Ser × X X
Granola-Independent [12]* Ser X ≥ 2 X
Granola-Coordinated [12]* Ser X ≥ 2 X
Walter [35] PSI X ≤ 2 X
COPS [26]* Causal X ≤ 2 ×
Orbe [14]* Causal × 2 ×
ChainReaction [5]* Causal × ≥ 2 ×
RAMP-F [8]* RA X ≤ 2 X
RAMP-H [8]* RA X ≤ 2 X
RAMP-S [8]* RA X 2 X

Figure 8: Categorization of read-only transactions
along the SNOW properties. Astericks denote algo-
rithms that are specialized for read-only transactions.

satisfied: it is impossible to guarantee a bad thing (violat-
ing strict serializability) will never happen. Any system
that can violate a safety property is not safe, and thus
cannot be used in practice.

The CAP Theorem proves it is impossible for a
distributed data store to always provide consistency
(strict serializability) and availability under network par-
titions [9, 18]. Lipton and Sandberg [25] first discov-
ered and Attiya and Welch [7] later refined a result that
shows it is impossible to achieve sequential consistency
and low latency in a replicated system. The CAP Theo-
rem and Lipton/Sandberg result are similar to SNOW in
that they point to a fundamental design decision for sys-
tem builders where they must choose some properties at
the expense of losing others.

A recent line of work has investigated read-only trans-
action for transactional memory (TM). Attiya et al. [6]
proved that it is impossible to have strictly serializ-
able TM implementations that ensure read-only transac-
tions are invisible—i.e., reads do not update memory—
and wait-free—always terminate regardless of concur-
rent transactions. Peluso at el. [33] further refined this
result with a TM implementation that has wait-free read-
only transactions but with a relaxed consistency model.
This work explores the possibilities of read-only trans-
actions in a different setting from ours. The concerns
of the different setting are different, TM is interested in
efficient hardware implementation while we are more in-
terested in a finer granularity of performance properties,
e.g., one response.

8 Conclusion

Read-only transactions are a fundamental building block
for large-scale applications such as modern Web ser-
vices. The SNOW Theorem proves that there is a fun-
damental tradeoff between the power and latency of
read-only transactions by showing that it is impossible
for an algorithm to provide strict serializability, non-
blocking operations, one response per read, and com-
patibility with write transactions. The resulting no-
tion of SNOW-optimality along with latency-optimality
are powerful lenses for examining existing systems and
determining if the latency of their read-only transac-
tions can be improved. Using those lenses we designed
and implemented COPS-SNOW—a new latency-optimal
algorithm—and Rococo-SNOW—a new SNOW-optimal
algorithm. Our evaluation demonstrates that both algo-
rithms provide lower latency for read-only transactions.
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