
Dynamo / Bayou
Feb 23rd & 24th, 2022

[Adapted from Andrew Or’s]

Some context...
Dynamo and Bayou both offer high availability and weak consistency

Most traditional databases offer strong consistency and low availability
Not suitable for modern applications with super high demands

What are some example applications of each?
Flight ticket booking (HA)
Amazon shopping carts (HA)
Offline edits (HA)
Billing services (SC)
Bank accounts (SC)

Availability is important

Tens of millions of customers at peak times

Tens of millions of shopping cart requests, 3 million checkouts per day

Hundreds of thousands of concurrently active sessions

Strict Service-Level Agreements (SLAs) translate to business value

Dynamo
Fully decentralized, highly available key-value store

Always writeable, resolve conflicts during reads --- Eventual Consistency

API for clients to specify requirements (99.9th percentile)

Departure from RDBMS: simpler functionality, fewer guarantees, runs on
commodity hardware (low-end, broadly compatible, non-specialized
machines)

(Read the original paper, especially Section 4)

https://www.cs.princeton.edu/courses/archive/spring22/cos418/papers/dynamo.pdf

Techniques for achieving availability

Consistent hashing for partitioning key space

Vector clocks for reconciling conflicts during reads

Sloppy quorums for handling temporary failures

Anti-entropy using Merkle trees for syncing key-value pairs

Gossip-based protocol for membership notifications

Techniques for achieving availability

Consistent hashing for partitioning key space

Vector clocks for reconciling conflicts during reads

Sloppy quorums for handling temporary failures

Anti-entropy using Merkle trees for syncing key-value pairs

Gossip-based protocol for membership notifications

Consistent Hashing

Assign each node a random position on
the ring

Node owns the preceding key range

For fault tolerance, replicate each key at
N successor nodes in the ring

Virtual nodes: each physical node gets
assigned multiple nodes on the ring (e.g.
B, D, F)

Virtual Nodes

Consistent Hashing

Desirable properties?

Uniform distribution of load

Minimum object movements when
nodes join or leave the ring

Number of virtual nodes can be
adjusted for device heterogeneity

Techniques for achieving availability

Consistent hashing for partitioning key space

Vector clocks for reconciling conflicts during reads

Sloppy quorums for handling temporary failures

Anti-entropy using Merkle trees for syncing key-value pairs

Gossip-based protocol for membership notifications

Conflict resolution

Two machines write different values to
the same key

Vector clocks: list of (node, count) pairs
where count is incremented on write

If one vector clock subsumes another,
discard older value

Else, return all conflicting values to client

Context contains vector clocks
Dynamo client API is simple:

get(key) (value, context)

put(key, value, context)

Common pattern: put after get

DELETE

Conflict resolution

Two machines write different values to
the same key

Vector clocks: list of (node, count) pairs
where count is incremented on write

If one vector clock subsumes another,
discard older value

Else, return all conflicting values to client

Techniques for achieving availability

Consistent hashing for partitioning key space

Vector clocks for reconciling conflicts during reads

Sloppy quorums for handling temporary failures

Anti-entropy using Merkle trees for syncing key-value pairs

Gossip-based protocol for membership notifications

Sloppy Quorums

Write to N nodes, return success when W < N nodes respond

Read from N nodes, return value(s) from R < N nodes

Typically, W+R > N means at least one writer and one reader overlap, so
values are consistent

Sloppy here means skip nodes that have failed, such that even if W+R > N,
the readers and writers may not overlap = not consistent!

Sloppy Quorums

Example:

Typical values are N = 3, W = R = 2

Nodes C and D have failed, so key k is
written to E and F instead

Nodes C and D recover, and now client
tries to read from C and D = stale value

Hinted Handoff

“Hint” refers to the node the data originally
belongs to

Example:

Nodes E and F remember they are writing
on behalf of C and D

As soon as C and D recovers, E and F
transfer their values for k to C and D

Sloppy Quorums

Write to N nodes, return success when W < N nodes respond

Read from N nodes, return value(s) from R < N nodes

Typically, W+R > N means at least one writer and one reader overlap, so
values are consistent

Sloppy here means skip nodes that have failed, such that even if W+R > N,
the readers and writers may not overlap = not consistent!

Techniques for achieving availability

Consistent hashing for partitioning key space

Vector clocks for reconciling conflicts during reads

Sloppy quorums for handling temporary failures

Anti-entropy using Merkle trees for syncing key-value pairs

Gossip-based protocol for membership notifications

Anti-entropy using Merkle trees

Goal: minimize durability loss from above techniques

Nodes responsible for the same key spaces exchange Merkle trees

Find differences quickly while exchanging little information

Techniques for achieving availability

Consistent hashing for partitioning key space

Vector clocks for reconciling conflicts during reads

Sloppy quorums for handling temporary failures

Anti-entropy using Merkle trees for syncing key-value pairs

Gossip-based protocol for membership notifications

Membership notification

Gossip-based protocol to propagate membership changes

Each node learns the key spaces handled by all other nodes

Result: zero-hop distributed hash table (DHT)

Clearly not infinitely scalable, but storage requirement not a problem in practice

Bayou

What is it?
- Weakly consistent, replicated storage system

Goals:
- Maximize availability, support offline collaboration
- Minimize network communication
- Agree on all values (eventually)

Bayou Writes P: 0
A: 0
B: 0

VersionsPrimary

P: 0
A: 0
B: 0

VersionsA
P: 0
A: 0
B: 0

VersionsB

Client 1W(X, 4)

Legend
Commit Timestamp:Write Timestamp:Write Server

Bayou Writes P: 1
A: 0
B: 0

Versions

P: 0
A: 0
B: 0

VersionsA
P: 0
A: 0
B: 0

VersionsB

Client 1

∞:1:P W(X,4)

Legend
Commit Timestamp:Write Timestamp:Write Server

Primary

Bayou Writes P: 1
A: 0
B: 0

Versions

P: 0
A: 0
B: 0

VersionsA
P: 0
A: 0
B: 0

VersionsB

Client 1

W(Y, 8)

∞:1:P W(X,4)

Legend
Commit Timestamp:Write Timestamp:Write Server

Primary

Client 2
W(X, 3)

Bayou Writes P: 7
A: 0
B: 0

Versions

P: 0
A: 7
B: 0

VersionsA
P: 0
A: 0
B: 0

VersionsB

Client 1

W(Z, 8)

∞:1:P W(X,4)

∞:7:P W(Y,8)

Legend
Commit Timestamp:Write Timestamp:Write Server

Primary

Client 2
W(Y, 4)

∞:7:A W(X,3)

Bayou Writes P: 7
A: 0
B: 0

Versions

P: 0
A: 12
B: 0

VersionsA
P: 0
A: 0
B: 5

VersionsB
∞:5:B W(Z,8)

∞:1:P W(X,4)

∞:7:P W(Y,8)

Legend
Commit Timestamp:Write Timestamp:Write Server

Primary

∞:7:A W(X,3)

∞:12:A W(Y,4)

Bayou Anti-Entropy P: 7
A: 0
B: 0

VersionsP

P: 0
A: 12
B: 0

VersionsA
P: 0
A: 0
B: 5

VersionsB∞:5:B W(Z,8)

∞:7:A W(X,3)

∞:12:A W(Y,4)

P: 0
A: 12
B: 0

P: 0
A: 0
B: 5

Anti-Entropy Session
A & B

∞:7:A W(X,3)

∞:12:A W(Y,4)

∞:5:B W(Z,8)

∞:1:P W(X,4)

∞:7:P W(Y,8)

Bayou Anti-Entropy P: 7
A: 0
B: 0

VersionsP

P: 0
A: 12
B: 5

VersionsA
P: 0
A: 12
B: 5

VersionsB

∞:1:P W(X,4)

∞:7:P W(Y,8)

∞:5:B W(Z,8)

∞:7:A W(X,3)

∞:12:A W(Y,4)

∞:5:B W(Z,8)

∞:7:A W(X,3)

∞:12:A W(Y,4)

Bayou Commit P: 7
A: 0
B: 0

VersionsP

P: 0
A: 12
B: 5

VersionsA
P: 0
A: 12
B: 5

VersionsB

Primary commits its entries

1:1:P W(X,4)
2:7:P W(Y,8)

∞:5:B W(Z,8)

∞:7:A W(X,3)

∞:12:A W(Y,4)

∞:5:B W(Z,8)

∞:7:A W(X,3)

∞:12:A W(Y,4)

Bayou Write P: 7
A: 0
B: 0

VersionsP

P: 0
A: 12
B: 5

VersionsA
P: 0
A: 12
B: 13

VersionsB

Client 1Write after anti-entropy session
Write timestamp = max(clock, max(TS)+1)

1:1:P W(X,4)
2:7:P W(Y,8)

∞:5:B W(Z,8)

∞:7:A W(X,3)

∞:12:A W(Y,4)

∞:5:B W(Z,8)

∞:7:A W(X,3)

∞:12:A W(Y,4)

∞:13:B D(Y)

D(Y)

Bayou Anti-Entropy P: 7
A: 0
B: 0

VersionsP

P: 0
A: 12
B: 5

VersionsA
P: 0
A: 12
B: 13

VersionsB

Anti-Entropy Session
P & B

1:1:P W(X,4)
2:7:P W(Y,8)

∞:5:B W(Z,8)

∞:7:A W(X,3)

∞:12:A W(Y,4)

∞:5:B W(Z,8)

∞:7:A W(X,3)

∞:12:A W(Y,4)

∞:13:B D(Y)

1:1:P W(X,4)
2:7:P W(Y,8)

P: 7
A: 0
B: 0

∞:5:B W(Z,8)

∞:7:A W(X,3)

∞:12:A W(Y,4)

∞:13:B D(Y)

P: 0
A: 12
B: 13

Bayou Anti-Entropy P: 7
A: 12
B: 13

VersionsP

P: 0
A: 12
B: 5

VersionsA
P: 7
A: 12
B: 13

VersionsB

Anti-Entropy Session
P & B
Primary respects causality

∞:5:B W(Z,8)

∞:7:A W(X,3)

∞:12:A W(Y,4)

1:1:P W(X,4)
2:7:P W(Y,8)
∞:5:B W(Z,8)

∞:7:A W(X,3)

∞:12:A W(Y,4)

∞:13:B D(Y)

1:1:P W(X,4)
2:7:P W(Y,8)
∞:5:B W(Z,8)

∞:7:A W(X,3)

∞:12:A W(Y,4)

∞:13:B D(Y)

Bayou Commit P: 7
A: 12
B: 13

VersionsP

P: 0
A: 12
B: 5

VersionsA
P: 7
A: 12
B: 13

VersionsB

Primary commits Its entries

∞:5:B W(Z,8)

∞:7:A W(X,3)

∞:12:A W(Y,4)

1:1:P W(X,4)
2:7:P W(Y,8)
3:5:B W(Z,8)
4:7:A W(X,3)
5:12:A W(Y,4)
6:13:B D(Y)

1:1:P W(X,4)
2:7:P W(Y,8)
∞:5:B W(Z,8)

∞:7:A W(X,3)

∞:12:A W(Y,4)

∞:13:B D(Y)

Bayou P: 7
A: 12
B: 13

VersionsP

P: 7
A: 12
B: 13

VersionsA
P: 7
A: 12
B: 13

VersionsB

After a number of commits
and anti-entropy sessions
(without further writes)

1:1:P W(X,4)
2:7:P W(Y,8)
3:5:B W(Z,8)
4:7:A W(X,3)
5:12:A W(Y,4)
6:13:B D(Y)

1:1:P W(X,4)
2:7:P W(Y,8)
3:5:B W(Z,8)
4:7:A W(X,3)
5:12:A W(Y,4)
6:13:B D(Y)

1:1:P W(X,4)
2:7:P W(Y,8)
3:5:B W(Z,8)
4:7:A W(X,3)
5:12:A W(Y,4)
6:13:B D(Y)

Bayou and Dynamo similarities

Anti-entropy to achieve eventual consistency

Exchange vector clocks to determine order of operations

Expose conflict resolution to application

High availability!

