Concurrency in Go
Feb 2nd&3 2022



Go Resources

https://tour.golang.org/list
https://play.golang.org
https://gobyexample.com


https://tour.golang.org/list
https://play.golang.org
https://gobyexample.com/

Outline

Two Synchronization Mechanisms

Locks

Channels

MapReduce

A Case Study of WordCount



Two synchronization mechanisms

Locks - limit access to a critical section

Channels - pass information across processes using a queue



Example: Bank Account

Bob Bank Account

100
Read b =100

b=b+10
Write b = 110 110




Example: Bank Account

Bob Bank Account

Read b =100
b=b+10
Write b =110



What went wrong?

Changes to balance are not atomic

func Deposit(amount) {

read balance
balance = balance + amount Critical section
write balance



LOCkS |n GO func (a *Account) CheckBalance() int {

a.lock.Lock()
defer a.lock.Unlock()

return a.balance
package account }

import "sync"
func (a *Account) Withdraw(v int) {

type Account struct { a.lock.Lock()

balance int defer a.lock.Unlock()

lock sync.Mutex a.balance -= v

} }

func NewAccount(init int) Account { func (a *Account) Deposit(v int) {
return Account{balance: init} a.lock.Lock()

} defer a.lock.Unlock()

a.balance += v

}



Read Write Locks in Go

a.lock.RLock()
defer a.lock.RUnlock()

lock sync.RWMutex



Two Solutions to the Same Problem

Locks:

Multiple threads can reference same
memory location

Use lock to ensure only one thread is
updating it at any given time

0x1000: 100

Channels:
Data item initially stored in channel

Threads must request item from
channel, make updates, and return
item to channel




Go channels

result := make(chan int, numWorkers)
Channels also allow us for i := 0; 1 < numWorkers; i++ {
go func() {

to safely communicate

between goroutines
result <- 1

+0)
}

for 1 := 0; i < numlWorkers; i++ {
handleResult(<-result)

}
fmt.Println("Done!™)



Go channels

result := make(chan int, numServers)
Easy to express for 1 := 0; i < numServers; i++ {
go func() {
asynchronous RPC
resp :=

result <- resp

+0)
}

handleResponse(<-result)



Bank Account Code (using channels)

package account

type Account struct {
// Fill in Here

}

func NewAccount(init int) Account {
// Fill in Here

}

func (a
// What

func (a

/] 22?2

func (a

/] 22?2

*Account) CheckBalance() int {
goes Here?

*Account) Withdraw(v int) {

*Account) Deposit(v int) {



Bank Account Code (using channels)

package account func (a *Account) CheckBalance() int {
// What goes Here?

type Account struct { }

balance chan int

} func (a *Account) Withdraw(v int) {
/] 2?2

func NewAccount(init int) Account { }

a := Account{make(chan int, 1)}

a.balance <- init func (a *Account) Deposit(v int) {

return a /] ???

} }



Bank Account Code (using channels)

package account func (a *Account) CheckBalance() int {
bal := <-a.balance

type Account struct { a.balance <- bal

balance chan int return bal

} }

func NewAccount(init int) Account { func (a *Account) Withdraw(v int) {

a := Account{make(chan int, 1)} // ???

a.balance <- init }

return a

} func (a *Account) Deposit(v int) {
//???

}



Bank Account Code (using channels)

package account func (a *Account) CheckBalance() int {
bal := <-a.balance

type Account struct { a.balance <- bal

balance chan int return bal

} }

func NewAccount(init int) Account { func (a *Account) Withdraw(v int) {

a := Account{make(chan int, 1)} bal := <-a.balance

a.balance <- init a.balance <- (bal - v)

return a }

}

func (a *Account) Deposit(v int) {
//???
}



Bank Account Code (using channels)

package account func (a *Account) CheckBalance() int {
bal := <-a.balance

type Account struct { a.balance <- bal

balance chan int return bal

} }

func NewAccount(init int) Account { func (a *Account) Withdraw(v int) {

a := Account{make(chan int, 1)} bal := <-a.balance

a.balance <- init a.balance <- (bal - v)

return a }

}

func (a *Account) Deposit(v int) {
bal := <-a.balance
a.balance <- (bal + v)

}



Select statement

select allows a goroutine to wait on multiple channels at once

for {
select {
case money := <-dad:
buySnacks(money)
case money := <-mom:
buySnacks(money)
}



Select statement

select allows a goroutine to wait on multiple channels at once

for {
select {
case money := <-dad:
buySnacks(money)
case money := <-mom:
buySnacks(money)
case default:
starve()
time.Sleep(5 * time.Second)
}



Handle timeouts using select

result := make(chan int) func askServer(
result chan int,
timeout chan bool) {

askServer(result, timeout)

select {
case res := <-result:
handleResult(res) go func() {
ca: response :=
result <- response
} 3(O)

}



Handle timeouts using select

result := make(chan int)
timeout := make(chan bool)

askServer(result, timeout)

select {

case res := <-result:
handleResult(res)

case <-timeout:
fmt.Println("Timeout!")

func askServer(
result chan int,

timeout chan bool) {

go func() {

time.Sleep(5 * time.Second)
timeout <- true

30O
go func() {

response :=

result <- response
3(O)

}



Exercise: Implementing a mutex using channels

type Lock struct {
¥
func NewLock() Lock {

func (1 *Lock) Lock() {

func (1 *Lock) Unlock() {



Exercise: Implementing a mutex using channels

type Lock struct {
ch chan bool

}

func NewLock() Lock {

}

func (1 *Lock) Lock() {

}

func (1 *Lock) Unlock() {

}



Exercise: Implementing a mutex using channels

type Lock struct {
ch chan bool

}

func NewLock() Lock {

1l := Lock{make(chan bool, 1)}
l.ch <- true

return 1

}

func (1 *Lock) Lock() {

}

func (1 *Lock) Unlock() {

}



Exercise: Implementing a mutex using channels

type Lock struct {
ch chan bool

¥

func NewLock() Lock {

1l := Lock{make(chan bool, 1)}
l.ch <- true

return 1

}

func (1 *Lock) Lock() {
<-1.ch

}

func (1 *Lock) Unlock() {

}



Exercise: Implementing a mutex using channels

type Lock struct {
ch chan bool

¥

func NewLock() Lock {

1l := Lock{make(chan bool, 1)}
l.ch <- true

return 1

}

func (1 *Lock) Lock() {
<-1.ch

}

func (1 *Lock) Unlock() {
l.ch <- true

}



Outline

Two synchronization mechanisms
Locks

Channels

MapReduce

A Case Study of WordCount



Application: WordCount

How much wood would a woodchuck chuck if a woodchuck could chuck wood?

v

WordCount

v

how: 1, much: 1, wood: 2, would: 1, a: 2, woodchuck: 2, chuck: 2, if: 1, could: 1



Application: WordCount
Locally: Tokenize and store words in a hash map
How do you parallelize this?

Split document by half

Build two hash maps, one for each half



How do you do this in a distributed environment?




When in the Course of human events, it becomes
necessary for one people to dissolve the

political bands which have connected them with

another, and to assume, among the Powers of the
earth, the separate and equal station to which

the Laws of Nature and of Nature's God entitle

them, a decent respect to the opinions of mankind
requires that they should declare the causes

which impel them to the separation.

Input document




When in the Course of human events, it

becomes necessary for one people to

dissolve the political bands which have

connected them with another, and to assume,

among the Powers of the earth, the separate

and equal station to which the Laws of

Nature and of Nature's God entitle them, a

decent respect to the opinions of mankind

requires that they should declare the causes

which impel them to the separation.




When in the Course o
human events
becomes necessar

one pg

dissol

connected them with

another, and to assume,

requires that they
should declare the

causes which 1ipd

d of Nature's
le them, a
pect to the

bt mankind

e Powers of the
h, the separate and
equal station to which

the Laws of



nature:

god: 1,

decent: 1)

mankind:




requires: 1, that: 1,

they: 1, s

declare:

when: 1, in: 1,
course:
of: 1, human: 1

events: 1,

Compute word counts locally



Merging results computed locally

Several options
Don’t merge —

Send everything to one node

Partition key space among nodes in cluster (e.g. [a-e], [f-7], [k-p] ...)

1. Assign a key space to each node
2. Split local results by the key spaces
3.



requires: 1, that: 1,
they: 1, should: 1,

declare: 1, thg

when: 1, in: 1,
the: 1, course:
of: 1, human: 1
> , and: 1, of: 2,
events: 1, ntitle: 1, them: 1,
respect: 1,

, opinion: 1 ...

dissolve® 2,

political: 1, powers: 1, of: 2, earth:

which: 1, have: 1, 1, separate: 1, equal:

connected: 1, them: 1 ... 1, and: 1



[a-e]
[f-31
[k-p]

causes: 1, declare: 1,

in: 1, it: 1, hum
course: 1, eventy

of: 1

i, and: 1,

god: 1,

bands: 1, 1, and: 1,
connected: 1, equal: 1, earth: 1,
political: 1,

powers: 1, of: 2

Split local results by key space

1, opinion:



All-to-all shuffle



[a-e]
[f-31
[k-p]

bands: 1, d

connected: , of: 2,

events: 1, among: 2, of: 2,

mankind: 1, of: 1,

equal: 1, earth: 1,

and: 1, decent: 1, causes: 1, opinion: 1, political:

declare: 1

Note the duplicates...



separate: 1

bands: 1, d

nn : 1
connected 1, of: 5,

events: 1, among: : 2. mankind: 1
. E) . 3

equal: 1, earth: 1, L. L.
opinion: 1, political: 1
entitle: 1, decent: 1,

causes: 1, declare: 1

Merge results received from other nodes



MapReduce

Partition dataset into many chunks
Map stage: Each node processes one or more chunks locally

Reduce stage:



MapReduce Interface

map (key, value) -> list(<k’, v’'>)
Apply function to (key, value) pair

Outputs list of intermediate pairs

reduce (key, list<value>) -> <k’ , v'>

Applies aggregation function to values



MapReduce: WordCount

map (key, value):

// key = document name

// value = document contents
for each word w in value:

emit (w, 1)

reduce (key, values):
// key = the word

// values = number of occurrences of that word

count = sum(values)
emit (key, count)



MapReduce: WordCount

(how, 1), (much, 1), how
How much wood (wood, 1), (would, 1), — much
would a woodchuck (&, 1), (woodchuck, 1), . wood
chuck if a woodchuck (ehuck, 1), (If, 1), (&, 1), = —r
could chuck wood? (woodchuck, 1), (couwld, 1),
(chuck, 1), (wood, 1)

Bl

woodchuck

shuffle reduce

(&, 1), (iwoodchuck, 1),
A woodchuck would (would, 1), (chuck, 1),
chuck a lot of wood (o, 1), (lot, 1), (of, 1),
If & woodchuck (wood, 1), (If. 1) (a, 1),
could chuck wood (woodchuck, 1), (couwld,
1) (ehuck, 1), (wood, 1)




Why is this hard?

Failure iIs common

Even if each machine is available p = 99.999% of the time, a datacenter with
n = 100,000 machines still encounters failures (1-p") = 63% of the time

Data skew causes unbalanced performance across cluster

Problems occur at scale



MapReduce #hadoop

Map Reduce

Dryad ‘AZ



Assignment 1.1 is due 2/3

Assignment 1.2 is due 2/8
Assignment 1.3 is due 2/10



Sequential MapReduce

Map Phase Reduce Phase

Map Task O Reduce Task 0

Map Task N-1 Reduce Task K-1



Distributed MapReduce

Map Phase Reduce Phase

é Map Task 0 é Reduce Task 0

Map Task N-1 Reduce Task K-1




