
2/16/22

1

Eventual Consistency
& Bayou

COS 418: Distributed Systems
Lecture 8

Mike Freedman

1

Availability versus Consistency
• Later topic: Distributed consensus algorithms

• Strong consistency (ops in same order everywhere)

• But, strong reachability/availability requirements

2

If the network fails (common case), can we provide
any consistency when we replicate?

2

Eventual consistency
• Eventual consistency: If no new updates to the object,

eventually all reads will return the last updated value

• Common: git, iPhone sync, Dropbox, Amazon Dynamo

•Why do people like eventual consistency?
• Fast read/write of local copy of data
• Disconnected operation

3

Issue: Conflicting writes to different copies
How to reconcile them when discovered?

3

Bayou:
A Weakly Connected Replicated Storage System

• Meeting room calendar app as case study in ordering and
conflicts in a distributed system with poor connectivity

• Each calendar entry = room, time, set of participants

• Want everyone to see the same set of entries, eventually
• Else users may double-book room
• Or, avoid using an empty room

4

4

2/16/22

2

Paper context
• Early ’90s: Dawn of PDAs, laptops

• H/W clunky but showing clear potential
• Commercial devices did not have wireless.

• This problem has not gone away!
• Devices might be off, not have network access

• Mainly outside the context of datacenters
• Local write/reads still really fast

• Even in datacenters when replicas are far away (geo-replicated)
5

5

Why not just a central server?
•Want my calendar on a disconnected mobile phone

• i.e., each user wants database replicated on their device
• Not just a single copy

• But phone has only intermittent connectivity
• Mobile data expensive, Wi-Fi not everywhere, all the time
• Bluetooth useful for direct contact with other calendar

users’ devices, but very short range
6

6

Swap complete databases?
• Suppose two users are in Bluetooth range

• Each sends entire calendar database to other
• Possibly expend lots of network bandwidth

•What if the calendars conflict, e.g., the two calendars
have concurrent meetings in a room?

• iPhone sync keeps both meetings
• Want to do better: automatic conflict resolution

7

7

Automatic conflict resolution:
Granularity of “conflicts”

• Can’t just view the calendar database as abstract bits:
• Too little information to resolve conflicts:

1. “Both files have changed” can falsely conclude calendar conflict
• e.g., Monday 10am meeting in room 3 and Tuesday 11am in room 4

2. “Distinct record in each DB changed” can falsely conclude
that there is no conflict
• e.g., Monday 10–11am in room 3 Doug attending, Monday 10-11am in

room 4 Doug attending, …
8

8

2/16/22

3

Application-specific conflict resolution

• Intelligence that can identify and resolve conflicts
• More like users’ updates: read database, think, change

request to eliminate conflict

• Must ensure all nodes resolve conflicts in the same way to
keep replicas consistent

9

9

Application-specific update functions

• Suppose calendar write takes form:
• “10 AM meeting, Room=302, COS-418 staff”
• How would this handle conflicts?

• Better: write is an update function for the app
• “1-hour meeting at 10 AM if room is free, else 11 AM,

Room=302, COS-418 staff”
10

10

Potential Problem:
Permanently inconsistent replicas

• Node A asks for meeting M1 at 10 AM, else 11 AM
• Node B asks for meeting M2 at 10 AM, else 11 AM

• Node X syncs with A, then B
• Node Y syncs with B, then A

• X will put meeting M1 at 10:00
• Y will put meeting M1 at 11:00

11
Can’t just apply update functions when replicas sync

11

Totally Order the Updates!
•Maintain an ordered list of updates at each node

• Make sure every node holds same updates
• And applies updates in the same order
• Make sure updates are a deterministic function of db contents

• If we obey above, “sync” is simple merge of two ordered lists
12

Write log

12

2/16/22

4

Agreeing on the update order
• Timestamp: 〈local timestamp T, originating node ID〉

• Ordering updates a and b:
• a < b if a.T < b.T or (a.T = b.T and a.ID < b.ID)

13

13

Write log example
• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈770, B〉: B asks for meeting M2 at 10 AM, else 11 AM

• Pre-sync database state:
• A has M1 at 10 AM
• B has M2 at 10 AM

• What's the correct eventual outcome?
• The result of executing update functions in timestamp

order: M1 at 10 AM, M2 at 11 AM 14

Timestamp

14

Write log example: Sync problem
• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈770, B〉: B asks for meeting M2 at 10 AM, else 11 AM

• Now A and B sync with each other. Then:
• Each sorts new entries into its own log, ordering by timestamp
• Both now know the full set of updates

• A can just run B’s update function
• But B has already run B’s operation, too soon!

15

15

Solution: Roll back and replay
• B needs to “roll back” the DB, and re-run both ops in

the correct order

• Bayou User Interface: Displayed meeting room
calendar entries are “Tentative” at first

• B’s user saw M2 at 10 AM, then it moved to 11 AM

16

Big point: The log at each node holds the truth;
the DB is just an optimization

16

2/16/22

5

Does update order respect causality?
• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈700, B〉: Delete update 〈701, A〉
• Possible if B’s clock is slow, and using real-time timestamps

• Result: delete will be ordered before add
• (Delete never has an effect.)

• Q: How can we assign timestamp to respect causality?
17

17

Lamport clocks respect causality

•Want event timestamps so that if a node observes E1
then generates E2, then TS(E1) < TS(E2)

• Use lamport clocks!

• If E1 à E2 then TS(E1) < TS(E2)

18

18

Lamport clocks respect causality
• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈700, B〉: Delete update 〈701, A〉
• 〈706, B〉: Delete update 〈701, A〉

• With Lamport clocks:
• When A sends 〈701, A〉, it includes its clock, T (> 701)
• When B receives 〈701, A〉, it updates its clock to T’ > T
• When B creates the delete, it timestamps it with its clock, T’’ > T’
• T’’ > T’ > T > 701 (e.g., T’’ is 706)

• Q: What if A and B are concurrent? 19

19

Timestamps for write ordering: Limitations

• Never know whether some write from “the past”
may yet reach your node…

• So all entries in log must be tentative forever

• And you must store entire log forever

20

Want to commit a tentative entry, so
we can trim logs and have meetings

20

2/16/22

6

Fully decentralized commit
• Strawman: Update 〈10, A〉 committed when all nodes have seen

all updates with TS ≤ 10

• Have sync always send in log order
• If you have seen updates with TS > 10 from every node then you’ll

never again see one < 〈10, A〉
• So 〈10, A〉 is committed

• Why doesn’t Bayou do this?
• A node that remains disconnected prevents commiting
• So many writes may be rolled back on re-connect 21

21

How Bayou commits writes
• Bayou uses a primary commit scheme
• One designated node (the primary) commits updates

• Primary marks each write it receives with a permanent
CSN (commit sequence number)
• That write is committed
• Complete timestamp = 〈CSN, local TS, node-id〉

22

Advantage: Can pick a primary node
close to locus of update activity

22

How Bayou commits writes (2)
• Nodes exchange CSNs when they sync

• CSNs define a total order for committed writes
• All nodes eventually agree on the total order
• Tentative writes come after all committed writes

23

23

Committed vs. tentative writes
• Suppose a node has seen every CSN up to a write, as

guaranteed by propagation protocol
• Can then show user the write has committed
• Mark calendar entry “Confirmed”

• Slow/disconnected node cannot prevent commits!
• Primary replica allocates CSNs

24

24

2/16/22

7

Tentative writes
•What about tentative writes, though? How do they

behave, as seen by users?

• Two nodes may disagree on meaning of tentative writes
• Even if those two nodes have synced with each other!
• Only CSNs from primary replica can resolve disagreements

permanently

25

25

Ex: Disagreement on tentative writes

26

Time

Logs

A B C

〈2, A〉 〈1, B〉 〈0, C〉

W 〈0, C〉
W 〈1, B〉

W 〈2, A〉

sync

〈local TS, node-id〉

26

Ex: Disagreement on tentative writes

27

Time

Logs

A B C

〈2, A〉
〈1, B〉 〈0, C〉

W 〈0, C〉
W 〈1, B〉

W 〈2, A〉

sync

〈1, B〉
〈2, A〉

sync

〈local TS, node-id〉

27

Ex: Disagreement on tentative writes

28

Time

Logs

A B C

〈2, A〉 〈1, B〉
〈0, C〉

W 〈0, C〉
W 〈1, B〉

W 〈2, A〉

sync

〈1, B〉

〈2, A〉

sync

〈2, A〉
〈1, B〉

〈0, C〉

〈local TS, node-id〉

28

2/16/22

8

Ex: Disagreement on tentative writes

29

Time

Logs

A B C

〈2, A〉 〈1, B〉
〈0, C〉

W 〈0, C〉
W 〈1, B〉

W 〈2, A〉

sync

〈1, B〉

〈2, A〉

sync

〈2, A〉
〈1, B〉

〈0, C〉

〈local TS, node-id〉

29

Tentative order ≠ commit order

30

Time

Logs

A B Pri

〈-,20, A〉 〈-,20, A〉

W 〈-,10, B〉
W 〈-,20, A〉

sync

C

sync

〈-,10, B〉 〈-,10, B〉

〈CSN, local TS, node-id〉

〈-,20, A〉 〈-,20, A〉

30

Tentative order ≠ commit order

31

Time

Logs

A B Pri

〈5,20, A〉 〈-,20, A〉

sync

C

sync

〈-,10, B〉 〈-,10, B〉

〈CSN, local TS, node-id〉

〈-,20, A〉 〈-,20, A〉
〈5,20, A〉
〈6,10, B〉

〈5,20, A〉
〈6,10, B〉

31

Primary commit order constraint
• Suppose user creates meeting, then deletes or changes it

• What CSN order must these ops have?
• Create first, then delete or modify
• Must be true in every node’s view of tentative log entries

• Rule: Primary’s total write order must preserve causal order
of writes. (But how?)

32

32

2/16/22

9

Primary preserves causal order
• Rule: Primary’s total write order must preserve causal

order of writes

• How?
• Nodes sync full logs

• If A à B then A is in all logs before B
• Primary orders newly synced writes in tentative order

• Primary will commit A and then commit B
33

33

Trimming the log
•When nodes receive new CSNs, can discard all

committed log entries seen up to that point
• Sync protocol à CSNs received in order

• Keep copy of whole database as of highest CSN

• Result: No need to keep years of log data

34

34

Let’s step back
• Is eventual consistency a useful idea?
• Yes: we want fast writes to local copies iPhone sync,

Dropbox, Dynamo, …

• Are update conflicts a real problem?
• Yes—all systems have some more or less awkward

solution
35

35

Is Bayou’s complexity warranted?
• Update functions, tentative ops, …

• Only critical if you want peer-to-peer sync
• i.e. disconnected operation AND ad-hoc connectivity

36

36

2/16/22

10

What are Bayou’s take-away ideas?

1. Eventual consistency: if updates stop, all replicas eventually the same

2. Update functions for automatic app-driven conflict resolution

3. Ordered update log is the real truth, not the DB

4. Use Lamport clocks: eventual consistency that respects causality

37

37

