
4/20/22

1

Wrap Up

COS 418: Distributed Systems
Lecture 24

Mike Freedman

1

Back in Lecture 1…

2

2

Distributed Systems, Why?

Or, why not 1 computer to rule them all?

• Failure => Fault Tolerance

• Limited computation/storage => Scalability

• Physical location => Availability, Low Latency

3

3

Distributed Systems Goal
• Service with higher-level abstractions/interface
• e.g., database, programming model, …

• Hide complexity - Do “heavy lifting” so app developer doesn’t need to
• Reliable (fault-tolerant)
• Scalable (scale-out)
• Strong guarantees (consistency and transactions)

• Efficiently
• Lower latency (faster interactions, e.g., page load)
• Higher throughput (fewer machines)

4

4

4/20/22

2

What We Learned
(Much of it at least, at a very high level)

5

5

Network communication

• How can multiple computers communicate?

•Networking stack solves this for us!

•We use it to build distributed systems, relying on the
guarantees it provides.

6

6

Remote Procedure Calls

• Additional layer on top of networking stack

• At least once – dealing with failures!

• At most once – ensuring correctness despite concurrency
and failures

7

7

Time, logical clocks

• Concurrency!

•Wall-clock time often inadequate for distributed systems

• Lamport clocks: A à B => LC(A) < LC(B)

• Vector clocks: A à B <=> VC(A) < VC(B)

8

8

4/20/22

3

Eventual Consistency, Bayou

• Favor availability above all else
• e.g., disconnected dropbox operation

• Eventual consistency

• Bayou system design
• Operation log (logical, not physical, replication)
• Causal consistency from log propagation and lamport timestamps

9

9

P2P Systems & DHTs

• Efficiency of various designs

• Goal: scale lookup state, lookup computation, storage; fault tolerant

• Scale lookup state, lookup computation w/ Chord

• Scale storage with sharding

• Fault tolerance through replication, robust protocols

10

10

Dynamo

• Favor availability above all + scalable storage

• Eventual consistency (really eventual)

• Zero-hop DHT on top of data sharded with consistent hashing
• Virtual nodes enable better load balancing (improves

throughput), but design to still ensure fault tolerance

11

11

So far…

• Can build systems that are fault tolerant, scalable, provide
low latency, highly available

• But…

•Weak guarantees

12

12

4/20/22

4

Fault
Tolerant Scalable

Highly Available
& Low Latency Guarantees

Bayou yes no yes causal

Dynamo yes yes yes eventual

13

Strong Guarantees + Fault Tolerance

• Linearizability: acts just like 1 machine processing requests 1 at a time!

• Replicated state machines:
• Log of operations, execute in order
• Primary-backup (and VM-FT)
• Special mechanism for failure detection
• React to failure

• Paxos, RAFT
• Built in failure detection using quorums (f+1 out of 2f+1)
• Mask non-leader failure

14

14

Fault
Tolerant Scalable

Highly Available
& Low Latency Guarantees

Bayou yes no yes causal

Dynamo yes yes yes eventual

Paxos/RAFT yes no no linearizability

15

Impossibility Results Guide Us

• CAP: Must choose either availability of all replicas or
consistency between replicas

• PRAM: Must choose either low latency of operations or
consistency between replicas

16

16

4/20/22

5

Availability + Low Latency + Scalability +
Stronger Guarantees
• COPS provides causal consistency

• Stronger guarantees impossible w/ low latency
• Like a scalable Bayou

• Sharding to scale storage within a datacenter

• Geo-replicate data across datacenters
• Replication and sharding!

• New protocols for replicating writes between replicas and reading data
• Distributed protocols w/ work on only some machines in each replica for scalability
• Consistently reading data across shards required transactions

17

17

Fault
Tolerant Scalable

Highly Available
& Low Latency Guarantees

Bayou yes no yes causal

Dynamo yes yes yes eventual

Paxos/RAFT yes no no linearizability

COPS yes yes yes causal &
read-only txns

18

Strong Guarantees + Scalability
• Strict Serializability: acts just like 1 machine processing requests 1 at a

time with transactions across shards

• Atomic Commit w/ 2PC

• Concurrency control
• 1 Big Lock: No concurrency L
• 2PL: Growing phase then shrinking phase
• OCC: Assume you will succeed, only acquire locks during 2PC

19

19

Fault
Tolerant Scalable

Highly Available
& Low Latency Guarantees

Bayou yes no yes causal

Dynamo yes yes yes eventual

Paxos/RAFT yes no no linearizability

COPS yes yes yes causal &
read-only txns

2PL no yes - strict serializability

20

4/20/22

6

Strong Guarantees + Scalability + Fault Tolerance

• Google’s Spanner
• Sharding to scale storage

• Paxos for fault tolerance
• 2PL + 2PC for read-write transactions: Stick serializability, scalable processing (mostly)

• So many reads, make read-only txns efficient!
1. Strictly serializable read-only transactions that block, but do not acquire any locks
2. Stale read-only transactions that do not even block

• Enabled by TrueTime
• TrueTime gives bounded wall-clock time interval

• Commit wait ensures a transaction completes after its wall-clock commit time
21

21

Fault
Tolerant Scalable

Highly Available
& Low Latency Guarantees

Bayou yes no yes causal

Dynamo yes yes yes eventual

Paxos/RAFT yes no no linearizability

COPS yes yes yes causal &
read-only txns

2PL no yes - strict serializability

Spanner
(stale-read)

yes yes no
(yes)

strict serializability
(stale)

22

Strong Guarantees + Scalability + Low Latency?

• SNOW is impossible for read-only transactions

•Must choose strongest guarantees (Strict Serializability & Write
transactions) OR lowest latency (Non-blocking & One Round)

• PRAM / CAP are for replication
• SNOW / NOCS is for sharding

23

23

Now You Can!

• Build systems that are fault tolerant, scalable, provide low
latency, highly available
• + stronger guarantees, but not the strongest

• OR

• Build systems that are fault tolerant, scalable, and provide the
strongest guarantees

24

24

4/20/22

7

Let’s See It In Action

25

25

Client à Frontend Server

26

26

Inside the Datacenter
Web Tier Storage Tier

Executes frontend,
application code

Stores state,
provides …

Fault Tolerance?

Scalability?

Fault Tolerance?

Scalability?

27

27

App Code Reads/Writes to Storage Tier

Storage
Application code

Facebook page load has 1000s of reads, chains of sequential
reads dozens long [HotOS ‘15]

Request

Page

28

28

4/20/22

8

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Scalable Storage is
Sharded and Geo-Replicated

A-F

G-L

M-R

S-Z

29

29

A-F

G-L

M-R

S-Z

A -
F

G -
L

M
-R

S -
Z

So Much Concurrency!

A-F

G-L

M-R

S-Z

30

30

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

So Many Failures!

A-F

G-L

M-R

S-Z

31

31

Not Just One Backend System

[Diagram from Kaushik Veeraraghavan’s OSDI ‘16 Talk] 32

32

4/20/22

9

Each Backend System is a Distributed System

• But with different tradeoffs and designs depending on use

• LIKE count?
• Eventually consistent storage system

•User Password?
• Strongly consistent storage system

33

33

Each Backend System is a Distributed System

• Search results
• Use precomputed index, precomputed with MapReduce, or a

more efficient, specialized system

• Trending hashtags
• Use a stream processing system to continuously update

computation about what is most popular

34

34

Distributed Systems on Distributed Systems on …

[Diagram from Malte Schwarzkopf PhD Thesis 2015] 35

35

Thanks!

36

