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Fundamentals of Distributed Systems

Massive Parallelization
Fault Tolerance

Synchronization/Consensus

Fundamentals of Distributed Systems
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Also apply to systems for
machine learning!
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Lecture Goals

* Define systems for machine learning

* Understand challenges and considerations in designing such systems
* Explore a widely deployed system for ML (TensorFlow)
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Agenda

* What'’s led to the success of machine learning?
* What'’s a typical machine learning job?

* Systems for machine learning
* Definition
 Challenges:
* How to handle distributed computation?
* How to support execution in diverse environments/heterogeneous hardware?
* Developer interface: Tradeoff between flexibility and efficiency

* Case Study: TensorFlow

The Success of Machine Learning Today
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The Ingredients in ML Success

ResNet, Transformers, Graph Neural
Networks, Mixture-of-Experts, ...

ML systems bridge model, data, and hardware

GPUs, TPUs,
ImageNet, Kaggle, L Supercomputers, FPGAS
Flickr, NetFlix, ...
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What is a typical machine
learning job?
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Note on Training vs Inference

In today’s discussion, will

— focus on training!
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D E Inference o i C— Will briefiy discuss
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Machine Learning Training Pipeline

1. Users select a model architecture!

- Typically Deep Neural Networks (DNNs)
- Others types/variants: Recurrent Neural Networks, Graph Neural Networks, etc.
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Machine Learning Training Pipeline

2. Users provide a large labeled dataset
- images + classification labels
- images + captions
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- sentence + sentimental analysis

Images + labels kg
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Machine Learning Training Pipeline

3. Train the model!

- sequentially process the dataset
- learn using a form of gradient descent (via backpropagation)

Neural Network — Backpropagation & g7¢
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Machine Learning Training Pipeline

Model & l I Trained

Dataset Model
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. Phew.
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Don’t worry Model & Trained
about it. Dataset Model

System for Abstracts away the underlying systems
complexity of training machine learning models

Machine
Learning

System for Machine Learning

* Abstracts away the underlying systems complexities of executing the
training of machine learning models

* Design Considerations
* Main
* How to handle distributed computation?
* How to support execution in different environments and on heterogeneous hardware?
* What’s the right interface for users that still supports customizations?
* Others

* How to support different non deterministic control flows (eg recurrent neural networks?)
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Design Consideration #1: How to handle
distributed computation?

* Why perform distributed machine learning in the first place?

* Trends
* Increasingly large datasets
* millions/billions of images/samples
* Increasingly large DNNs
* more layers, more parameters

Too slow to process on a single
machine

The entirety of a DNN (and its
weights/gradients) cannot fit on a
single machine!
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* For example,

* GPT-3 is a language model with about 175 billion parameters
* Is trained on 45 Terabytes of text data

Challenge: All the workers must communicate with the
centralized server for weight updates.

Distributed ML: Data
Parallelism
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Training Dataset
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2. Compute the gradients of 3. Aggregate gradients

across GPUs
Adapted from Zhihao Jia each batch on a GPU .

1. Partition training data into batches

Challenge: How split
model across machines?

Distributed ML: Model Parallelism

* Split a model into multiple subgraphs and assign them to different

devices :
NN =
Mt Model Model - SO 4 ;:?::r;e;diate
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devices
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raining Dataset
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Distributed ML Considerations

* Placement of computation across machines

* Communication of intermediate data between machines
* Fault tolerance! What happens if a machine crashes?

* Synchronization
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Design Consideration #2: How to support
execution in different environments and on
heterogeneous hardware?

* Various types of compute settings: Define Once +
* datacenter (thousands of CPUs, GPUs) Run Everywhere
* workstation set up (single CPU, few GPUs)
* laptop

* Heterogeneous Hardware: GPUs, TPUs, FPGAs
* Each is optimized for different tasks
* Optimal memory placement/computation configuration depends on type

Design Consideration #3: What's the right
interface/programming model for users that still
supports customizations?

* Support different user requirements
* novice user: uses several default settings
* expert user:
« define new layers
* try new training algorithms

* introduce new optimizations

* Want easy-to-use interface while still being customizable

System for Machine Learning Recap

* Abstracts away the underlying systems complexities of executing the
training of machine learning models

* Design Considerations
* How to handle distributed computation?
* How to support execution in different environments and on heterogeneous
hardware?
* What'’s the right interface for users that still supports customizations?

Case Study: TensorFlow
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TensorFlow

* Developed by Google Brain
* successor to DistBelief

* A system widely used in industry/academia for distributed machine
learning!

* Main Contributions
* Support for large-scale distributed training
* Modular architecture that decouples optimizations of the machine learning
model from the infrastructure itself
* supports diverse compute environments, heterogeneous hardware
. Vterykuser-friendly: Python interface that enables customizability across the
stac

TensorFlow System Design

Parameters

Periodic
L. checkpoint

ead params Apply grads
—
Reader i Dist. FS
Preprocessing Training
Data Preprocessing Distributed DNN Training Model
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checkpointing

TensorFlow: Example

# 1. Construct a graph representing the model.

x = tf.placeholder (tf.float32, [BATCH_SIZE, 784]) # Placeholder for input.
Phase 1: Define an y = tf.placeholder (tf.float32, [BATCH_SIZE, 10]) # Placeholder for labels.
ML model as a W_1 = tf.Variable(tf.random_uniform([784, 100])) # 784x100 weight matrix.
dataflow graph b_1 = tf.Variable(tf.zeros([100])) # 100-element bias vector.
layer_1 = tf.nn.relu(tf.matmul(x, W_1) + b_2) # Output of hidden layer.
W_2 = tf.vVariable(tf.random_uniform([100, 10])) # 100x10 weight matrix.
b_2 = tf.variable(tf.zeros([10])) # 1l0-element bias vector.
layer_2 = tf.matmul (layer_1, W_2) + b_2 # Output of linear layer.

# 2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits (layer_2, y)
train_op = tf.train.AdagradOptimizer(0.01).minimize (loss)

¥ 3. Execute the graph on batches of input data.
Phase 2: Execute an with tf.Session() as sess:

P . sess.run(tf.initialize_all_variables())
optimized version of for step in range (NUM_STEPS) :

the graph x_data, y_data = ...

Connect to the TF runtime.
Randomly initialize weights.
Train iteratively for NUM_STEPS
Load one batch of input data.

P

sess.run(train_op, {x: x_data, y: y_data}) Perform one training step.
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Systems for Machine Learning Inference

* Application/customer facing: stringent latency targets
* Deal with interactions with network
* Caching opportunities

* Model compression/pruning
« tradeoff between speed and accuracy

* Edge deployments
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Active Research Areas in ML+Systems

* Application-specific optimizations for machine learning (e.g., video
analytics)

* ML for systems (e.g., learned databases, compilation optimizations)

* New computation models (spot instances, serverless computing,
programmable networks)

Takeaways

* Systems for machine learning are critical to the success of machine
learning

* Handle the systems challenges involved in running large-scale
distributed machine learning
« e.g., fault tolerance, consistency, heterogeneous hardware, communication

* Provide an easy-to-use interface for developers while still enabling
significant levels of customizability
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