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Recap: Spanner is Strictly Serializable

« Efficient read-only transactions in strictly
serializable systems

« Strict serializability is desirable but costly!
* Reads are prevalent! (340x more than write txns)

« Efficient rotxns > good system overall performance

Recap: Ideas Behind Read-Only Txns

» Tag writes with physical timestamps upon commit
» Write txns are strictly serializable, e.g., 2PL

* Read-only txns return the writes, whose commit
timestamps precede the reads’ current time
* Rotxns are one-round, lock-free, and never abort

Recap: TrueTime

» Timestamping writes must enforce the invariant

* If T2 starts after T1 commits (finishes), then T2 must have
a larger timestamp

» TrueTime: partially-synchronized clock abstraction
» Bounded clock skew (uncertainty)
* TT.now() > [earliest, latest]; earliest <= T,ps <= latest
» Uncertainty (g) is kept short

» TrueTime enforces the invariant by
» Use at least TT.now().latest for timestamps

* Commit wait
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Enforcing the Invariant with TT Enforcing the Invariant with TT
If T2 starts after T1 commits (finishes), then T2 must If T2 starts after T1 commits (finishes), then T2 must
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This Lecture Read-Write Transactions (2PL)
« How write transactions are done * Three phases
* 2PL + 2PC (sometimes 2PL for short)
* How they are timestamped
_ o G b
* How read-only transactions are done Execute > Prepare > Commit
* How read timestamps are chosen \ |
* How reads are executed ' -
2PC: atomicity
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Read-Write Transactions (2PL)
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Txn T = {R(A=?), W(A=?+1), W(B=?+1), W(C=?+1)}

Execute:

* Does reads: grab read locks and return the most recent data, e.g., R(A=a)
+ Client computes and buffers writes locally, e.g., A = a+1, B=a+1, C = a+1
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Read-Write Transactions (2PL)

Execute Prepare Commit
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Commit:

« After hearing from all participants, coord commits T if all OK; o/w, abort T

« Coord logs commit/abort record via Paxos, applies writes if commit, release locks
« Coord sends commit/abort messages to participants

« Participants log commit/abort via Paxos, apply writes if commit, release locks

» Coord sends result to client either after its “log commit” or after ack 1

Read-Write Transactions (2PL)
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Prepare:

« Choose a coordinator, e.g., A, others are participants
« Send buffered writes and the identity of the coordinator; grab write locks

« Each participant prepares T by logging a prepare record via Paxos with its
replicas. Coord skips prepare (Paxos Logging)

« Participants send OK to coord if lock grabbed and after Paxos logging is done
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Timestamping Read-Write Transactions
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Timestamping: Tis=tsx ‘§m
« Participant: choose timestamp (eg, tsg and tsc) larger than any writes it has applied
+ Coordinator: choose a timestamp, e.g., tsa, larger than
« Any writes it has applied
+ Any timestamps proposed by the participants, e.g., tsg and ts¢
* lts current TT.now().latest
+ Coord commit-waits: TT.after(tsa) == true. Commit-wait overlaps w Paxos logging
* tsais T's commit timestamp 12
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Read-Only Transactions (shards part)
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Client chooses a read timestamp ts = TT.now().latest
* If no prepared write, return the preceding write, e.g., on A
« If write prepared with ts’ > ts, no need to wait, proceed with read, eg, on B
« If write prepared with ts’ < ts, wait until write commits, e.g., on C
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Read-Only Transactions (Paxos part)
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Paxos writes are monotonic, e.g., writes with smaller timestamp must be applied
earlier, W» is applied before W3

T’ needs to wait until there exists a Paxos write with ts >10 (eg, W3), so all writes
before 10 are finalized

Put it together: a shard can process a read at ts if ts <= tsafe

teate = min(t{2%0%, t105,) : before tere, all system states (writes) have finalized
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Serializable Snapshot Reads

* Client specifies a read timestamp way in the past
» E.g., one hour ago

* Read shards at the stale timestamp

 Serializable

+ Old timestamp cannot ensure real-time order

» Better performance
» No waiting in any cases
» E.g., non-blocking, not just lock-free

» Can have performance but still strictly serializable?
» E.g., one-round, non-blocking, and strictly serializable
» Coming in next lecture!

14

17

Takeaway

» Strictly serializable (externally consistent)
* Make it easy for developers to build apps!

* Reads dominant, make them efficient
* One-round, lock-free

* TrueTime exposes clock uncertainty

» Commit wait and at least TT.now.latest() for
timestamps ensure real-time ordering

* Globally-distributed database
* 2PL w/ 2PC over Paxos!
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