
4/3/22

1

Spanner
Part II

COS 418: Distributed Systems
Lecture 19

Mike Freedman

Slides adapted from the Spanner OSDI talk

1

• Efficient read-only transactions in strictly
serializable systems
• Strict serializability is desirable but costly!
• Reads are prevalent! (340x more than write txns)

• Efficient rotxns à good system overall performance

2

Recap: Spanner is Strictly Serializable

2

• Tag writes with physical timestamps upon commit
• Write txns are strictly serializable, e.g., 2PL

• Read-only txns return the writes, whose commit
timestamps precede the reads’ current time
• Rotxns are one-round, lock-free, and never abort

3

Recap: Ideas Behind Read-Only Txns

3

• Timestamping writes must enforce the invariant
• If T2 starts after T1 commits (finishes), then T2 must have

a larger timestamp

• TrueTime: partially-synchronized clock abstraction
• Bounded clock skew (uncertainty)
• TT.now() à [earliest, latest]; earliest <= Tabs <= latest
• Uncertainty (ε) is kept short

• TrueTime enforces the invariant by
• Use at least TT.now().latest for timestamps
• Commit wait

4

Recap: TrueTime

4

4/3/22

2

5

Enforcing the Invariant with TT
If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp
Let T1 write SB and T2 write SA

Tabs

SA

SB

TrueTime

T1.now()
= [3, 15]

T1.commit
(ts = 15)

8 20153 16

wait

TT.after(15)
== true

b

x

b < x

5

6

Enforcing the Invariant with TT
If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp
Let T1 write SB and T2 write SA

Tabs

SA

SB

TrueTime

T1.now()
= [3, 15]

T1.commit
(ts = 15)

8 20

T2.now()
= [18, 22]

T2.commit
(ts = 22)

15

T2.ts > T1.ts

3
22

16
18

wait

x y5

6

• How write transactions are done
• 2PL + 2PC (sometimes 2PL for short)
• How they are timestamped

• How read-only transactions are done
• How read timestamps are chosen
• How reads are executed

7

This Lecture

7

• Three phases

Execute à Prepare à Commit

8

Read-Write Transactions (2PL)

2PC: atomicity

8

4/3/22

3

Txn T = {R(A=?), W(A=?+1), W(B=?+1), W(C=?+1)}
Execute:
• Does reads: grab read locks and return the most recent data, e.g., R(A=a)
• Client computes and buffers writes locally, e.g., A = a+1, B = a+1, C = a+1

Read-Write Transactions (2PL)

A

B

C

T

R(A)

A=a
Execute

Client

9

9

Prepare:
• Choose a coordinator, e.g., A, others are participants
• Send buffered writes and the identity of the coordinator; grab write locks
• Each participant prepares T by logging a prepare record via Paxos with its

replicas. Coord skips prepare (Paxos Logging)
• Participants send OK to coord if lock grabbed and after Paxos logging is done

10

Read-Write Transactions (2PL)

A

B

C

T

R(A)

A=a

Coord. à

Par. à

Par. à

ok
Recv W(a+1)

Recv W(a+1)

Recv W(a+1)

Log Prepare

Log Prepare

Execute Prepare

Client

10

Commit:
• After hearing from all participants, coord commits T if all OK; o/w, abort T
• Coord logs commit/abort record via Paxos, applies writes if commit, release locks
• Coord sends commit/abort messages to participants
• Participants log commit/abort via Paxos, apply writes if commit, release locks
• Coord sends result to client either after its “log commit” or after ack

Read-Write Transactions (2PL)

A

B

C

T

R(A)

A=a
Execute

Coord. à

Par. à

Par. à

ok

Prepare

Recv W(a+1)

Recv W(a+1)

Recv W(a+1)

Log Prepare

Log Prepare

Log
Commit

Log
Commit

Log
Commit

Apply W(a+1)

Apply W(a+1)

Commit

Apply W(a+1)

ack

Client

11

11

Timestamping:
• Participant: choose timestamp (eg, tsB and tsC) larger than any writes it has applied
• Coordinator: choose a timestamp, e.g., tsA, larger than

• Any writes it has applied
• Any timestamps proposed by the participants, e.g., tsB and tsC
• Its current TT.now().latest

• Coord commit-waits: TT.after(tsA) == true. Commit-wait overlaps w Paxos logging
• tsA is T’s commit timestamp

Timestamping Read-Write Transactions

Client

A

B

C

T
Execute

Coord. à

Par. à

Par. à

ok,
tsB, tsC

Prepare

Log
Prepare

Log
Prepare

Log
Commit

Log
Commit

Log
Commit

Commit

ack

tsB

tsC

tsA

Commit
Wait

T.ts = tsA

T.ts = tsA

T.ts = tsA

12

12

4/3/22

4

• Client chooses a read timestamp ts = TT.now().latest
• If no prepared write, return the preceding write, e.g., on A
• If write prepared with ts’ > ts, no need to wait, proceed with read, eg, on B
• If write prepared with ts’ < ts, wait until write commits, e.g., on C

Read-Only Transactions (shards part)

A

B

C

0

0

0

Txn T’ = R(A=?, B=?, C=?)

Client
T’

ts=10

5

W1cmt

12

W2prep

W0

W0

W0

8

W3prep

10

W1 W0 W0

W3cmt

15
Wait

13

13

• Paxos writes are monotonic, e.g., writes with smaller timestamp must be applied
earlier, W2 is applied before W3

• T’ needs to wait until there exists a Paxos write with ts >10 (eg, W3), so all writes
before 10 are finalized

• Put it together: a shard can process a read at ts if ts <= tsafe

• tsafe = min(𝑡!"#$%"&'! , 𝑡!"#$()) : before tsafe, all system states (writes) have finalized

Read-Only Transactions (Paxos part)

A

B

C

0

0

0

Client

5

W1cmtW0

W0

W0

10

W2

W2Paxos W3Paxos

14

ts=10

T’

14

• Client specifies a read timestamp way in the past
• E.g., one hour ago

• Read shards at the stale timestamp

• Serializable
• Old timestamp cannot ensure real-time order

• Better performance
• No waiting in any cases
• E.g., non-blocking, not just lock-free

• Can have performance but still strictly serializable?
• E.g., one-round, non-blocking, and strictly serializable
• Coming in next lecture!

17

Serializable Snapshot Reads

17

Takeaway

• Strictly serializable (externally consistent)
• Make it easy for developers to build apps!

• Reads dominant, make them efficient
• One-round, lock-free

• TrueTime exposes clock uncertainty
• Commit wait and at least TT.now.latest() for

timestamps ensure real-time ordering

• Globally-distributed database
• 2PL w/ 2PC over Paxos!

18

