Spanner

Part Il

A

COS 418: Distributed Systems
Lecture 19

Mike Freedman

Slides adapted from the Spanner OSDI talk

1

Recap: Spanner is Strictly Serializable

« Efficient read-only transactions in strictly
serializable systems

« Strict serializability is desirable but costly!
* Reads are prevalent! (340x more than write txns)

« Efficient rotxns > good system overall performance

Recap: Ideas Behind Read-Only Txns

» Tag writes with physical timestamps upon commit
» Write txns are strictly serializable, e.g., 2PL

* Read-only txns return the writes, whose commit
timestamps precede the reads’ current time
* Rotxns are one-round, lock-free, and never abort

Recap: TrueTime

» Timestamping writes must enforce the invariant

* If T2 starts after T1 commits (finishes), then T2 must have
a larger timestamp

» TrueTime: partially-synchronized clock abstraction
» Bounded clock skew (uncertainty)
* TT.now() > [earliest, latest]; earliest <= T,ps <= latest
» Uncertainty (g) is kept short

» TrueTime enforces the invariant by
» Use at least TT.now().latest for timestamps

* Commit wait

4/3/22

4/3/22

Enforcing the Invariant with TT Enforcing the Invariant with TT
If T2 starts after T1 commits (finishes), then T2 must If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp have a larger timestamp
Let T1 write Sg and T2 write Sa TT.after(15) Let T1 write Sg and T2 write S
——true | |P<X T2.now() T2.commit
pu— =[18,22] (ts =22)
SA // g SA [/*\]
VLN
s N
3 8 1516 /4~ 20 - 3 5 8 1516 ,/ 120 _
Taos % R 4 g Tas —% 7 7 \1%‘ LY g
N7 wait \\I// \\: L7 wait \\'//
Sg o5 ® > Se P e >
T1.now() T1.commit T1.now() T1.commit
=[3, 15] (ts = 15) = [3, 15] (ts = 15) T2.ts > Tl.ts
b TrueTime) TrueTime i
6
This Lecture Read-Write Transactions (2PL)
« How write transactions are done * Three phases
* 2PL + 2PC (sometimes 2PL for short)
* How they are timestamped
_ o G b
* How read-only transactions are done Execute > Prepare > Commit
* How read timestamps are chosen \ |
* How reads are executed ' -
2PC: atomicity
8

Read-Write Transactions (2PL)

Execute E
T Aa!
Client | \/A‘ 2. >
Al 5 >
8 RA) !
B | : >
C ; >

Txn T = {R(A=?), W(A=?+1), W(B=?+1), W(C=?+1)}

Execute:

* Does reads: grab read locks and return the most recent data, e.g., R(A=a)
+ Client computes and buffers writes locally, e.g., A = a+1, B=a+1, C = a+1

T !
Coord. > A 8 RA) E

Read-Write Transactions (2PL)

Execute Prepare Commit

Client | Aa

v

‘h’h

Log
Commit

\ 8 Recv W(a+1)

'ApplyW(a+1) Log
Par. > B : Log Prepare Commn
\'8 Recv W(a+1) _ Apply W(a+1
Par. > C : Log Prepare C Log)
0 Recv Wat1) ommt
Apply Wa+1)t
Commit:

« After hearing from all participants, coord commits T if all OK; o/w, abort T

« Coord logs commit/abort record via Paxos, applies writes if commit, release locks
« Coord sends commit/abort messages to participants

« Participants log commit/abort via Paxos, apply writes if commit, release locks

» Coord sends result to client either after its “log commit” or after ack 1

Read-Write Transactions (2PL)

Execute | Prepare 1
| |
. T A=a. '
Client | \/ ' \\‘ ' >
Coord. > A | L : >
o rR®) ! \ O Recv Wia+1) /] 1
Par. > B : : Log Prepare : >
H Recv W(a+1) / H
Par. > C : E Log Prepare E >
6 Recv W(a+1)
Prepare:

« Choose a coordinator, e.g., A, others are participants
« Send buffered writes and the identity of the coordinator; grab write locks

« Each participant prepares T by logging a prepare record via Paxos with its
replicas. Coord skips prepare (Paxos Logging)

« Participants send OK to coord if lock grabbed and after Paxos logging is done

10

Timestamping Read-Write Transactions

Execute Commit

\/

Prepare

1
1
1
:
|
Commit
ok, |
’ wait >
N tse, tsc) < v bh
0
I
I
I
1
1
1
1
1

Client I

v

Coord. > A |
tsa

Par. > B

Par. > C

Prepare

Timestamping: Tis=tsx ‘§m
« Participant: choose timestamp (eg, tsg and tsc) larger than any writes it has applied
+ Coordinator: choose a timestamp, e.g., tsa, larger than
« Any writes it has applied
+ Any timestamps proposed by the participants, e.g., tsg and ts¢
* lts current TT.now().latest
+ Coord commit-waits: TT.after(tsa) == true. Commit-wait overlaps w Paxos logging
* tsais T's commit timestamp 12

11

12

4/3/22

Read-Only Transactions (shards part)

W1 Wg WO

v

>
E=
=
1
I
[
\
v

(@)
o -Oé o
g
G-/
3
v v

Wait
Txn T’ = R(A=?, B=?, C=?) &

Client chooses a read timestamp ts = TT.now().latest
* If no prepared write, return the preceding write, e.g., on A
« If write prepared with ts’ > ts, no need to wait, proceed with read, eg, on B
« If write prepared with ts’ < ts, wait until write commits, e.g., on C

13

13

Read-Only Transactions (Paxos part)

T
Client | : = >
ts=1
A VIVO V\I/wmt I o~
o s 1 I .
B V:Vo WgPaxos : W3F’axos ;
0 1
o W | .
0 10

Paxos writes are monotonic, e.g., writes with smaller timestamp must be applied
earlier, W» is applied before W3

T’ needs to wait until there exists a Paxos write with ts >10 (eg, W3), so all writes
before 10 are finalized

Put it together: a shard can process a read at ts if ts <= tsafe

teate = min(t{2%0%, t105,) : before tere, all system states (writes) have finalized

14

Serializable Snapshot Reads

* Client specifies a read timestamp way in the past
» E.g., one hour ago

* Read shards at the stale timestamp

 Serializable

+ Old timestamp cannot ensure real-time order

» Better performance
» No waiting in any cases
» E.g., non-blocking, not just lock-free

» Can have performance but still strictly serializable?
» E.g., one-round, non-blocking, and strictly serializable
» Coming in next lecture!

14

17

Takeaway

» Strictly serializable (externally consistent)
* Make it easy for developers to build apps!

* Reads dominant, make them efficient
* One-round, lock-free

* TrueTime exposes clock uncertainty

» Commit wait and at least TT.now.latest() for
timestamps ensure real-time ordering

* Globally-distributed database
* 2PL w/ 2PC over Paxos!

18

4/3/22

