Consensus: Paxos + RAFT

|
COS 418: Distributed Systems

Lecture 13

Mike Freedman

RAFT slides based on those from Diego Ongaro and John Ousterhout

1

Review: Primary-Backup Replication

CEEEEEEE Cllents

* Nominate one replica

— Clients send all requests to primary

— Primary orders clients’ requests

From Two to Many Replicas

CEEEEEE iﬁ\ Cients

shl

i ing
Module ine

g 5 valee
l‘ ng " ng l‘ ng
L\ L\ L\

add | Jmp | mov

* Primary-backup with many replicas
— Primary waits for acknowledgement from all backups
— All updates to set of replicas needs to update shared disk

What else can we do with more replicas?

» Viewstamped Replication:

— State Machine Replication for any number of replicas
Group of 2f + 1 replicas
* Protocol can tolerate f replica crashes

 Differences with primary-backup
— No shared disk (no reliable failure detection)
— Don’t need to wait for all replicas to reply
— Need more replicas to handle f failures (2f+1 vs f+1)

The Need For a View Change

» So far: Works for f failed backup replicas

« But what if the f failures include a failed primary?
— All clients’ requests go to the failed primary
— System halts despite merely f failures

* Need to agree on who the next primary should be

Consensus

Definition:

1. A general agreement about something

2. Anidea or opinion that is shared by all the
people in a group

Consensus Used in Systems

Group of servers want to:

* Make sure all servers in group receive the same updates in
the same order as each other

» Maintain own lists (views) on who is a current member of the
group, and update lists when somebody leaves/fails

» Ensure mutually exclusive (one process at a time only) access
to a critical resource like a file

Flavors of Paxos: Basic Paxos

* Run the full protocol each time
— e.g., for each slot in the command log

* Takes 2 rounds until a value is chosen

Basic Paxos
Phase 1

— Choose proposal n, send
<prepare, n> to all acceptors

—Ifn> nhighest
® Nhighest =N
* Reply < promise, n,
(naccepted ,Vaccepted) " Q >
— Else
* Reply < prepare-failed >

Phase 2

— If promise from of acceptors,
* Determine Vacceptea With highest
Naccepted, if exists

* Send <accept, (n| Vaccepted " V)> to
all acceptors

- If nz= nhighest
* Accept proposal:
Naccepted = Nhighest = N
Vaccepted = V

2)L —»
nn=t.2

<prepare, 1.2>

Example runs of Paxos

<prepare, 1.1> <promise, Case: Proposer 1 fails to
E 11, 0> get majority of promises
1 for 1.1, because majority
= / of acceptors had received
@ <prepére- 1.2 prior to 1.1
1.2 fled>

2

Example runs of Paxos

<prepare, 1.1> <Promise, <accept,
Prep 11,0> (1,v10)>

1

nh=1.1 nh=1.1

) ()

nh=1.1 nh=1.1

V@,
§®/ @

10

11

Example runs of Paxos

<prepare, 1.1>
1 @ 1

nh=1.2

nh=1.2

Case: Proposer 2 receives
majority of promises for
1.2, progresses to phase 2

DN @ D
=12 <promise,
<prepare, 1.2> 1.2, 0>

N

12

Example runs of Paxos

<prepare, 1.1> <promise, Case: Proposer 1 receives

1.1, 0> majority of promises for
1 1 1.1, progresses to phase 2
nh=1.2
nh=1.2
2 —_— 2 Case: Proposer 2 receives

majority of promises for

=12 <promise,
1.2, progresses to phase 2

<prepare, 1.2> 1.2,0>

13

Example runs of Paxos

<prepare, 1.1> <promise, <accept,

1.1, 0> (1.1,v44)> Reject <accept, 1.1>,
1) . 1 ’ @ given 1.1 <nn
nh=1.2 nh=1.2
nh=1.2 Nh=nNa=1.2

Proposal <1.2, vi2>

: accepted by majority of
2) F—s) J— accegtors i
nh=1.2 <pr0mlse, nh=na=1.2

<prepare, 1.2> 1.2, 0> <accept,
(1.2,v1,5)>

Example runs of Paxos

<promise, <accept,
<prepare, 1.1> 11, 0> (.1,v54)> Reject <accept, 1.1>,
1 —_— 1 - @ given 1.1 <nh
nh=1.2 \ nh=1.2
=12 =12
2 \
m=1.2 <promise, =12

<prepare, 1.2> 1.2,0>

14

Example runs of Paxos

1 @ 1 @ Proposal 1.3 is highest,

nh=1.2 n=12 put 1.2 accepted already
by majority

nh=1.2 Nnh=na=1.2

2 _,@\

m=12 <promise, 2 = et 2
<prepare, 1.2> 1.2,0> <prepal /4
3

15

16

Example runs of Paxos

D D @
nh=1.2 nh=1.2
@,
2) T— (2 @
nh=1.2 <pr0mlse, Nh= Na=1..
<prepare, 1.2> 1.2,0> <prepard/ 13>
" <promise,
3 1.3, (M2, Vi2)> 3

17

Flavors of Paxos: Multi-Paxos

« Elect a leader and have them run 2" phase directly
—e.g., for each slot in the command log
— Leader election uses Basic Paxos

* Takes 1 round until a value is chosen
— Faster than Basic Paxos

* Used extensively in practice!
— RAFT is similar to Multi Paxos

Example runs of Paxos

1 R _

Once vi.2 acgepted,
stays accepted

1
@,
2 @ T3 (2 @
nh=1.2 <pr0mise, Nh= Na=1..
<prepare, 1.2> 1.2,0> <prepa /s . <accept,
<promise, (1.3, vi.2)>

3 1.3, (N1, V1.0)> 3

nh=1.2 nh=1.2

18

RAFT: A CONSENSUS ALGORITHM
FOR REPLICATED LOGS

Diego Ongaro and John Ousterhout

Stanford University

19

20

20

Goal: Replicated Log

HHHHHH$;¥

Clients

Consensus

* Replicated log => replicated state machine

— All servers execute same commands in same order
» Consensus module ensures proper log replication

21

21

Server States

+ At any given time, each server is either:
— Leader: handles all client interactions, log replication
— Follower: completely passive
— Candidate: used to elect a new leader

* Normal operation: 1 leader, N-1 followers

(Follower) (Candidate) (Leader)

23

Raft Overview

1. Leader election

. Normal operation (basic log replication)

. Safety and consistency after leader changes
. Neutralizing old leaders

. Client interactions

o o0 A WD

. Reconfiguration

22

22

23

Liveness Validation

 Servers start as followers

» Leaders send heartbeats (empty AppendEntries RPCs) to maintain
authority over followers

* If electionTimeout elapses with no RPCs (100-500ms), follower
assumes leader has crashed and starts new election

timeout,

timeout, new election

start start election

receive votes from
majority of servers

ﬂ N
(Candidate) (Leader)

discover current leader
or higher term

discover server with
higher term

24

24

Terms (aka epochs)

Term 1 Term2 Term3 Term4 Term 5
1y 7} DA 1Y 7
time
Elections Split Vote Normal Operation

* Time divided into terms
— Election (either failed or resulted in 1 leader)
— Normal operation under a single leader

« Each server maintains current term value

» Key role of terms: identify obsolete information
25

Elections

+ Start election:
— Increment current term, change to candidate state, vote for self

+ Send RequestVote to all other servers, retry until either:

1. Receive votes from majority of servers:
* Become leader
* Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:
* Return to follower state

3. No-one wins election (election timeout elapses):
* Increment term, start new election

26

25

Elections

» Safety: allow at most one winner per term

— Each server votes only once per term (persists on disk)
— Two different candidates can’t get majorities in same term

sermaroy (=100 0 nes

get majority
Servers

* Liveness: some candidate eventually wins
— Each choose election timeouts randomly in [T, 2T]
— One usually initiates and wins election before others start
— Works well if T >> network RTT

27

27

26

Log Structure

trm11 2 3 4 5 6 7 8 log index
T 1 i 2 3 3 3 3
A A A E A
command

;

add [cmp| ret [mov| jmp

T 1 i 2 3 3 3 3

add [cmp| ret |mov| jmp | div | shl | sub

followers

T 1
add [cmp

1 1 1 2 3 3 3
add [cmp| ret |mov| jmp | div | shi
| |
I

committed entries

* Log entry = < index, term, command >
* Log stored on stable storage (disk); survives crashes
* Entry committed if known to be stored on majority of servers
— Durable / stable, will eventually be executed by state machines

28

28

Normal operation

» Client sends command to leader
* Leader appends command to its log
* Leader sends AppendEntries RPCs to followers
* Once new entry committed:
— Leader passes command to its state machine, sends result to client

— Leader piggybacks commitment to followers in later AppendEntries

— Followers pass committed commands to their state machines 29

29

Log Operation: Highly Coherent

1 2 3 4 5 6
1

1 1 2 3 3
server1 |add|cmp| ret movljmpl div |

T[T 1[2]3]2
server2 |add|cmp ret movljmplsub

« If log entries on different server have same index and term:
— Store the same command

— Logs are identical in all preceding entries

« If given entry is committed, all preceding also committed

31

Normal operation

¢

|
Conjﬂlseus Mgg;e
e @

(add jmplmov shi |

* Crashed / slow followers?
— Leader retries RPCs until they succeed

* Performance is “optimal” in common case:
— One successful RPC to any majority of servers

30

30

31

Log Operation: Consistency Check
1 2 3 14" s
leader AppendEntries succeeds:
follower M matching entry

leader | g omo] re [mo] mo|
cmp| ret |mov)Q AppendEntries fails:
TT T T 1T mismatch
follower

» AppendEntries has <index,term> of entry preceding new ones
 Follower must contain matching entry; otherwise it rejects

+ Implements an induction step, ensures coherency

32

32

Leader Changes

* New leader’s log is truth, no special steps, start normal operation
— Will eventually make follower’s logs identical to leader’s
— Old leader may have left entries partially replicated

» Multiple crashes can leave many extraneous log entries

log index 1.2 3 4 5 6 7
term 81 nnn
e[[s]ef7]7]7]
s

7|7

33

33

Picking the Best Leader

3 4_5

12
Canttell 2
which entries s2

committed!

Committed?

Unavailable during
leader transition

* Elect candidate most likely to contain all committed entries
— In RequestVote, candidates incl. index + term of last log entry

— Voter V denies vote if its log is “more complete™:
(newer term) or (entry in higher index of same term)

— Leader will have “most complete” log among electing majority

35

35

Safety Requirement

Once log entry applied to a state machine, no other state
machine must apply a different value for that log entry

 Raft safety property: If leader has decided log entry is committed,
entry will be present in logs of all future leaders
» Why does this guarantee higher-level goal?
1. Leaders never overwrite entries in their logs
2. Only entries in leader’s log can be committed
3. Entries must be committed before applying to state machine

Committed — Present in future leaders’ logs

Restrictions on 4.J \ Restrictions on

commitment leader election

34

Committing Entry from Current Term

1.2 3 4 5

st ~— Leader for term 2

—-—— AppendEntries just succeeded

Can’t be elected as
leader for term 3

» Case #1: Leader decides entry in current term is committed

» Safe: leader for term 3 must contain entry 4

36

36

Committing Entry from Earlier Term

Leader for term 4

AppendEntries just succeeded

s [3]e]3]

» Case #2: Leader trying to finish committing entry from earlier

» Entry 3 not safely committed:
— s5 can be elected as leader for term 5 (how?)
— If elected, it will overwrite entry 3 on sy, s, and s;

37

37

Challenge: Log Inconsistencies

12 3 4 5 6 7 8 9 10 1 12
Leader for term 8 |1|1|1|4|4|5|5|6|6|6|

______________________ (i\ Missing
(b) / Entries

(C)|1|1|1|4|4|5|5|6|6|65|6-

O[T e e e e

Possible
followers

H
|:\ Extraneous

oA / Eniries

o [T [EIEE e e o]

Leader changes can result in log inconsistencies
39

39

New Commitment Rules

Leader for term 4

 For leader to decide entry is committed:
1. Entry stored on a majority
2. =1 new entry from leader’s term also on majority
+ Example; Once e4 committed, s5 cannot be elected leader for term 5,
and e3 and e4 both safe

38

38

Repairing Follower Logs

nextindex

123456 78 9,
Leader for term 7 |1|1|1|4|4|5|5|6|e|-_6_:|

@[t]1]r]e]

12

AN AN AN AN AN AN

Followers

« New leader must make follower logs consistent with its own
— Delete extraneous entries
— Fill in missing entries
« Leader keeps nextindex for each follower:
— Index of next log entry to send to that follower
— Initialized to (1 + leader’s last index)

- If AppendEntries consistency check fails, decrement nextindex, try again

40

10

Repairing Follower Logs

nextindex
1.2 3 6 7 8 9 10 11 12

ENENENRARY | [
@[4]
Beforerepair (f) [1[1[1][2]2]2]3]3]3]3]3]
After repair (f)

Leader for term 7

41

Client Protocol

» Send commands to leader
— If leader unknown, contact any server, which redirects client to leader

* Leader only responds after command logged, committed,
and executed by leader

« If request times out (e.g., leader crashes):
— Client reissues command to new leader (after possible redirect)

» Ensure exactly-once semantics even with leader failures
— E.g., Leader can execute command then crash before responding
— Client should embed unique request ID in each command
— This unique request ID included in log entry

— Before accepting request, leader checks log for entry with same id 4

43

Neutralizing Old Leaders

* Leader temporarily disconnected
— other servers elect new leader
— old leader reconnected
— old leader attempts to commit log entries

+ Terms used to detect stale leaders (and candidates)
— Every RPC contains term of sender
— Sender’s term < receiver:

» Receiver: Rejects RPC (via ACK which sender processes...)
— Receiver’s term < sender:

* Receiver reverts to follower, updates term, processes RPC

+ Election updates terms of majority of servers
— Deposed server cannot commit new log entries

42

42

RECONFIGURATION

44

44

11

Configuration Changes

« View configuration: {leader, { members}, settings}

» Consensus must support changes to configuration:
e.g., replace failed machine, change degree of replication

« Cannot switch directly from one config to another:
conflicting majorities could arise

Cos ‘ Coow

Server 1 | i I .

Server2 |] Majority of C,i4
Server 3 [|]

Server 4 [] Majority of C,..,
Server 5 [

-/
T
time

45

45

2-Phase Approach via Joint Consensus

» Any server from either configuration can serve as leader

* If leader not in Cyew, must step down once Crew committed

Cold can make
unilateral decisions |
1

Cnew can make
unilateral decisions

Crow® s e s s o+ om—

secese \ leader not in Cnew

steps down here

Coldtnew ® e s e

Cold

Cold+new entry
committed

Cnew entry time
committed

47

47

2-Phase Approach via Joint Consensus

Joint consensus in intermediate phase: need majority of both old and new
configurations for elections, commitment

Configuration change just a log entry; applied immediately on receipt
(committed or not)

Once joint consensus is committed, begin replicating log entry for final config

Cold can make
unilateral decisions
D |

Cnew can make
unilateral decisions

Croweessseoes S ————

Coldinew ® oo eeee E

Cold

Cold+new entry
committed

Chrew entry time

committed 6

46

12

