
1

View Change Protocols
and Consensus

COS 418: Distributed Systems
Lecture 12

Mike Freedman

1

Today

1. From primary-backup to viewstamped replication

2. Consensus

2

2

Review: Primary-Backup Replication

• Nominate one replica primary
– Clients send all requests to primary
– Primary orders clients’ requests

3

add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

Clients
shl

Servers

3

From Two to Many Replicas

• Primary-backup with many replicas
– Primary waits for acknowledgement from all backups
– All updates to set of replicas needs to update shared disk

4

add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

Clients
shl

Servers

4

2

What else can we do with more replicas?

• Viewstamped Replication:
– State Machine Replication for any number of replicas
– Replica group: Group of 2f + 1 replicas
• Protocol can tolerate f replica crashes

• Differences with primary-backup
– No shared disk (no reliable failure detection)
– Don’t need to wait for all replicas to reply
– Need more replicas to handle f failures (2f+1 vs f+1)

5

5

Replica State

1. Configuration: identities of all 2f + 1 replicas

2. In-memory log with clients’ requests in assigned order

7

⟨op1, args1⟩ ⟨op2, args2⟩ ⟨op3, args3⟩ ⟨op4, args4⟩

7

Normal Operation

1. Primary adds request to end of its log
2. Replicas add requests to their logs in primary’s log order
3. Primary waits for f PrepareOKs à request is committed

8

Client

A (Primary)

B

C Time à

Request Prepare PrepareOK Reply

Execute

(f = 1)

8

Normal Operation: Key Points

• Protocol provides state machine replication
• On execute, primary knows request in f + 1 = 2 nodes’ logs
– Even if f = 1 then crash, ≥ 1 retains request in log

9

Client

A (Primary)

B

C Time à

Request Prepare PrepareOK Reply

Execute

(f = 1)

9

3

Piggybacked Commits

• Previous Request’s commit piggybacked on current Prepare
• No client Request after a timeout period?
– Primary sends Commit message to all backups

10

Client

A (Primary)

B

C Time à

Request Prepare PrepareOK Reply

Execute

(f = 1)

+Commit previous

10

The Need For a View Change
• So far: Works for f failed backup replicas
• But what if the f failures include a failed primary?
– All clients’ requests go to the failed primary
– System halts despite merely f failures

11

11

Views
• Let different replicas assume role of primary over time
• System moves through a sequence of views
– View = (view number, primary id, backup id, ...)

12

P

P
P

View #1

View #2

View #3

12

Correctly Changing Views

• View changes happen locally at each replica

• Old primary executes requests in the old view, new
primary executes requests in the new view

• Want to ensure state machine replication

• So correctness condition: Executed requests
1. Survive in the new view
2. Retain the same order in the new view

13

13

4

How do they agree on the new primary?

What if both backup nodes attempt to
become the new primary simultaneously?

14

Consensus

• Definition:

1. A general agreement about something
2. An idea or opinion that is shared by all the

people in a group

15

Consensus Used in Systems

Group of servers want to:

• Make sure all servers in group receive the same updates in the
same order as each other

• Maintain own lists (views) on who is a current member of the
group, and update lists when somebody leaves/fails

• Elect a leader in group, and inform everybody

• Ensure mutually exclusive (one process at a time only) access to
a critical resource like a file

16

16

Consensus

Given a set of processors, each with an initial value:

• Termination: All non-faulty processes eventually decide on a value

• Agreement: All processes that decide do so on the same value

• Validity: Value decided must have proposed by some process

17

5

Safety vs. Liveness Properties

• Safety (bad things never happen)

• Liveness (good things eventually happen)

18

Paxos

• Safety (bad things never happen)
• Agreement: All processes that decide do so on the same value

• Validity: Value decided must have proposed by some process

• Liveness (good things eventually happen)
• Termination: All non-faulty processes eventually decide on a value

20

Paxos’s Safety and Liveness

• Paxos is always safe

• Paxos is very often live (but not always, more later)

21

Roles of a Process in Paxos

• Three conceptual roles
– Proposers propose values
– Acceptors accept values, where value is chosen if majority accept
– Learners learn the outcome (chosen value)

• In reality, a process can play any/all roles

22

22

6

Strawmen
• 3 proposers, 1 acceptor
– Acceptor accepts first value received
– No liveness with single failure

• 3 proposers, 3 acceptors
– Accept first value received, learners choose common value

known by majority
– But no such majority is guaranteed

23

23

Paxos
• Each acceptor accepts multiple proposals
– Hopefully one of multiple accepted proposals will have a majority

vote (and we determine that)
– If not, rinse and repeat (more on this)

• How do we select among multiple proposals?
– Ordering: proposal is tuple (proposal #, value) = (n, v)
– Proposal # strictly increasing, globally unique
– Globally unique?
• Trick: set low-order bits to proposer’s ID

24

24

Paxos Protocol Overview
• Proposers:

1. Choose a proposal number n
2. Ask acceptors if any accepted proposals with na < n
3. If existing proposal va returned, propose same value (n, va)
4. Otherwise, propose own value (n, v)
Note altruism: goal is to reach consensus, not “win”

• Accepters try to accept value with highest proposal n
• Learners are passive and wait for the outcome

25

25

• Proposer:
– Choose proposal n,

send <prepare, n> to
acceptors

26

• Acceptors:
• If n > nh

• nh = n ← promise not to accept
any new proposals n’ < n

• If no prior proposal accepted
• Reply < promise, n, Ø >

• Else
• Reply < promise, n, (na , va) >

• Else
• Reply < prepare-failed >

Paxos Phase 1

26

7

Paxos Phase 2

• Proposer:
– If receive promise from majority of acceptors,
• Determine va returned with highest na, if exists
• Send <accept, (n, va || v)> to acceptors

• Acceptors:
– Upon receiving (n, v), if n ≥ nh,
• Accept proposal and notify learner(s)

na = nh = n
va = v

27

27

Paxos Phase 3

• Learners need to know which value chosen

• Approach #1
– Each acceptor notifies all learners
– More expensive

• Approach #2
– Elect a “distinguished learner”
– Acceptors notify elected learner, which informs others
– Failure-prone

28

28

Paxos: Well-behaved Run

29

<accepted, (1 ,v1)>

1

2

n

.

.

.

1 1

2

n

.

.

.
<prepare, 1>

1

<promise, 1>

1

2

n

.

.

.

<accept,
(1,v1)>

decide
v1

29

Paxos is Safe

• Intuition: if proposal with value v chosen, then every higher-
numbered proposal issued by any proposer has value v.

30

Majority of
acceptors

accept (n, v):

v is chosen

Next prepare request
with proposal n+1

30

8

Often, but not always, live

Completes phase 1
with proposal n0

31

Starts and completes phase
1 with proposal n1 > n0

Performs phase 2,
acceptors reject

Restarts and completes phase
1 with proposal n2 > n1

Process 0 Process 1

Performs phase 2,
acceptors reject

… can go on indefinitely …

31

Paxos Summary
• Described for a single round of consensus
• Proposer, Acceptors, Learners
– Often implemented with nodes playing all roles

• Always safe: Quorum intersection
• Very often live

• Acceptors accept multiple values
– But only one value is ultimately chosen

• Once a value is accepted by a majority it is chosen

32

Flavors of Paxos
• Terminology is a mess
• Paxos loosely and confusingly defined…

• We’ll stick with
–Basic Paxos
–Multi-Paxos

33

Flavors of Paxos: Basic Paxos

• Run the full protocol each time
– e.g., for each slot in the command log

• Takes 2 rounds until a value is chosen

34

9

Flavors of Paxos: Multi-Paxos

• Elect a leader and have them run 2nd phase directly
– e.g., for each slot in the command log
– Leader election uses Basic Paxos

• Takes 1 round until a value is chosen
– Faster than Basic Paxos

• Used extensively in practice!
–RAFT is similar to Multi Paxos

35

