Distributed Systems Intro

COS 418
Distributed Systems
Lecture 1

Mike Freedman

Strict Mask Policy, Zero Tolerance

Good, properly-fit masks required 100% of time
No eating or drinking. No removing masks.
Students not abiding will be asked to leave immediately

Distributed Systems, What?

1) Multiple computers
2) Connected by a network
3) Doing something together

Distributed Systems, Why?

* Or, why not 1 computer to rule them all?
* Failure
* Limited computation/storage/...

* Physical location

1/25/22

Distributed Systems, Where?

* Web Search (e.g., Google, Bing)

» Shopping (e.g., Amazon, Shopify)

* File Sync (e.g., Dropbox, iCloud)

* Social Networks (e.g., Facebook, Twitter, TikTok)
* Music (e.g., Spotify, Apple Music)

* Ride Sharing (e.g., Uber, Lyft)

* Video (e.g., Youtube, Netflix)

* Online gaming (e.g., Fortnite, Roblox)

Wi
-

Google 2012

“The Cloud” is not amorphous

1/25/22

1/25/22

\

Facebook

11 12

AR

ALY

i {“Hu‘.’”‘ Hm“ 1‘ \‘“ i

Everything changes at scale

“Pods provide 7.68Tbps to backplane”

15

i 100,000s of physical servers
=y 10s MW energy consumption

\.

M“ i ‘Facebook Pringevilge: i
=~ 1$250M physical infro; $1B IT infral

Research results matter: NoSQL

D

y 's Highly Available Key-value Store
Giuseppe DeCandia, Hastorun, Madan Jampani, Gunavardhan Kakulapati,

, Deniz Hastorun,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Wemner Vogels

16

1/25/22

Research results matter: Paxos

The Chubby lock service for loosely-coupled distributed systems

Mike Burrows, Google Inc.

iie

oo

Abstract cxampie, the Google File System [7) uses a Chubby lock e

. 10 appoint a GFS Paraany

We describe our expericnces with the Chubby lockser- PPt & OF%

. 0 prov master to disc o

-~ clicnts to find the mast h GFS and o

. Bigtablc usc Chubby asa well-known and svilable loca s

- 58 o core s s et of - n oty S

o ""I high perk “‘" use Chubby as the root of their distributed data struc- e

m‘“”: m:b::mm B):; tures. Some services use locks to partition work (at a fonss 0

- . “ coarse grain) between several servers.
with several of them cach handling a few tens of thou- ° -

sands of clicuts concurrcatly. The paper describes the __ Before Chubby was deployod, most distributed sys- iy 1 7

e ey omcurely. The Peper Sescrv wwe tems at Google used ad hoc methods for primary clec- ool

C L i t .

19

Research results matter: MapReduce

CErEER

MapReduce: Simplified Data Processing on Large Clusters éz

Jeffrey Dean and Sanjay Ghemawat

&Flink

s distributed stream
computing platform

5 sToRM

18

19

Instructors & Grading

* Lecture
* Professor Mike Freedman
« Slides available on course website

* Precept:
» TAs Anja Kalaba, Nanqginqin Li, Dongsheng Yang

* Grading
» Midterm (25%) and final (25%)
» Programming Assignments: 50%

20

1/25/22

418 assignment 1 (in three parts)

* Learn how to program in Go
* Basic Go assignment (due Feb 3)
* “Simple” Map Reduce (due Feb 8)
* Distributed Map Reduce (due Feb 10)

21

Topics

Distributed Systems Goal

« Service with higher-level abstractions/interface
* e.g., file system, database, key-value store, programming
model, ...

* Hide complexity
« Scalable (scale-out)
* Reliable (fault-tolerant)
» Well-defined semantics (consistent)

* Do “heavy lifting” so app developer doesn’t need to

22

Scalable Systems in this Class

» Scale computation across many machines
* MapReduce, TensorFlow

* Scale storage across many machines
* Dynamo, COPS, Spanner

23

24

1/25/22

Fault Tolerant Systems in this Class

* Retry on another machine
» MapReduce, TensorFlow

* Maintain replicas on multiple machines
* Primary-backup replication
» Paxos
* RAFT
* Bayou
* Dynamo, COPS, Spanner

Range of Abstractions and Guarantees

 Eventual Consistency
* Dynamo

» Causal Consistency
* Bayou, COPS

* Linearizability
+ Paxos, RAFT, Primary-backup replication

* Strict Serializability
+ 2PL, Spanner

25

Learning Objectives

* Reasoning about concurrency
» Reasoning about failure
* Reasoning about performance

* Building systems that correctly handle concurrency and failure

» Knowing specific system designs and design components

27

26

Conclusion

* Distributed Systems
+ Multiple machines doing something together
* Pretty much everywhere and everything computing now

 “Systems”
+ Hide complexity and do the heavy lifting (i.e., interesting!)
+ Scalability, fault tolerance, guarantees

28

1/25/22

