
1/25/22

1

Distributed Systems Intro

COS 418
Distributed Systems

Lecture 1

Mike Freedman

1

2

Strict Mask Policy, Zero Tolerance

• Good, properly-fit masks required 100% of time
• No eating or drinking. No removing masks.
• Students not abiding will be asked to leave immediately

2

Distributed Systems, What?

1)Multiple computers
2)Connected by a network
3)Doing something together

3

Distributed Systems, Why?
• Or, why not 1 computer to rule them all?

• Failure

• Limited computation/storage/…

• Physical location

4

1/25/22

2

• Web Search (e.g., Google, Bing)
• Shopping (e.g., Amazon, Shopify)
• File Sync (e.g., Dropbox, iCloud)
• Social Networks (e.g., Facebook, Twitter, TikTok)
• Music (e.g., Spotify, Apple Music)
• Ride Sharing (e.g., Uber, Lyft)
• Video (e.g., Youtube, Netflix)
• Online gaming (e.g., Fortnite, Roblox)
• …

Distributed Systems, Where?

5

6Backrub (Google) 1997
6

7

Google 2012

7

“The Cloud” is not amorphous

8

8

1/25/22

3

9Microsoft
9

10Google
10

11Facebook
11

12FacebookFacebook
12

1/25/22

4

13Facebook
13

100,000s of physical servers
10s MW energy consumption

Facebook Prineville:
$250M physical infro, $1B IT infra

14

15

Everything changes at scale

“Pods provide 7.68Tbps to backplane”

15

16

Research results matter: NoSQL

16

1/25/22

5

17

Research results matter: Paxos

17

18

Research results matter: MapReduce

18

Course Logistics

19

19

• Lecture
• Professor Mike Freedman
• Slides available on course website

• Precept:
• TAs Anja Kalaba, Nanqinqin Li, Dongsheng Yang

• Grading
• Midterm (25%) and final (25%)
• Programming Assignments: 50%

20

Instructors & Grading

20

1/25/22

6

418 assignment 1 (in three parts)

• Learn how to program in Go

• Basic Go assignment (due Feb 3)

• “Simple” Map Reduce (due Feb 8)

• Distributed Map Reduce (due Feb 10)

21

21

Topics

22

22

Distributed Systems Goal

• Service with higher-level abstractions/interface
• e.g., file system, database, key-value store, programming

model, …

• Hide complexity
• Scalable (scale-out)
• Reliable (fault-tolerant)
• Well-defined semantics (consistent)

• Do “heavy lifting” so app developer doesn’t need to

23

Scalable Systems in this Class
• Scale computation across many machines
• MapReduce, TensorFlow

• Scale storage across many machines
• Dynamo, COPS, Spanner

24

1/25/22

7

Fault Tolerant Systems in this Class
• Retry on another machine
• MapReduce, TensorFlow

• Maintain replicas on multiple machines
• Primary-backup replication
• Paxos
• RAFT
• Bayou
• Dynamo, COPS, Spanner

25

Range of Abstractions and Guarantees
• Eventual Consistency
• Dynamo

• Causal Consistency
• Bayou, COPS

• Linearizability
• Paxos, RAFT, Primary-backup replication

• Strict Serializability
• 2PL, Spanner

26

Learning Objectives
• Reasoning about concurrency
• Reasoning about failure
• Reasoning about performance

• Building systems that correctly handle concurrency and failure

• Knowing specific system designs and design components

27

Conclusion
• Distributed Systems
• Multiple machines doing something together
• Pretty much everywhere and everything computing now

• “Systems”
• Hide complexity and do the heavy lifting (i.e., interesting!)
• Scalability, fault tolerance, guarantees

28

