Distributed Systems Intro

COS 418
Distributed Systems
Lecture 1

Mike Freedman

Strict Mask Policy, Zero Tolerance

Good, properly-fit masks required 100% of time
No eating or drinking. No removing masks.
Students not abiding will be asked to leave immediately

Distributed Systems, What?

1) Multiple computers
2) Connected by a network
3) Doing something together

Distributed Systems, Why?

* Or, why not 1 computer to rule them all?
* Failure
* Limited computation/storage/...

* Physical location
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Distributed Systems, Where?

* Web Search (e.g., Google, Bing)

» Shopping (e.g., Amazon, Shopify)

* File Sync (e.g., Dropbox, iCloud)

* Social Networks (e.g., Facebook, Twitter, TikTok)
* Music (e.g., Spotify, Apple Music)

* Ride Sharing (e.g., Uber, Lyft)

* Video (e.g., Youtube, Netflix)

* Online gaming (e.g., Fortnite, Roblox)
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Google 2012

“The Cloud” is not amorphous
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Everything changes at scale

“Pods provide 7.68Tbps to backplane”
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i 100,000s of physical servers
=y 10s MW energy consumption
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Research results matter: NoSQL

D

y 's Highly Available Key-value Store
Giuseppe DeCandia, Hastorun, Madan Jampani, Gunavardhan Kakulapati,

, Deniz Hastorun,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Wemner Vogels
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Research results matter: Paxos

The Chubby lock service for loosely-coupled distributed systems

Mike Burrows, Google Inc.
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Research results matter: MapReduce

CErEER

MapReduce: Simplified Data Processing on Large Clusters éz

Jeffrey Dean and Sanjay Ghemawat

&Flink

s distributed stream
computing platform

5 sToRM
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Instructors & Grading

* Lecture
* Professor Mike Freedman
« Slides available on course website

* Precept:
» TAs Anja Kalaba, Nanqginqin Li, Dongsheng Yang

* Grading
» Midterm (25%) and final (25%)
» Programming Assignments: 50%
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418 assignment 1 (in three parts)

* Learn how to program in Go
* Basic Go assignment (due Feb 3)
* “Simple” Map Reduce (due Feb 8)
* Distributed Map Reduce (due Feb 10)
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Topics

Distributed Systems Goal

« Service with higher-level abstractions/interface
* e.g., file system, database, key-value store, programming
model, ...

* Hide complexity
« Scalable (scale-out)
* Reliable (fault-tolerant)
» Well-defined semantics (consistent)

* Do “heavy lifting” so app developer doesn’t need to
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Scalable Systems in this Class

» Scale computation across many machines
* MapReduce, TensorFlow

* Scale storage across many machines
* Dynamo, COPS, Spanner
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Fault Tolerant Systems in this Class

* Retry on another machine
» MapReduce, TensorFlow

* Maintain replicas on multiple machines
* Primary-backup replication
» Paxos
* RAFT
* Bayou
* Dynamo, COPS, Spanner

Range of Abstractions and Guarantees

 Eventual Consistency
* Dynamo

» Causal Consistency
* Bayou, COPS

* Linearizability
+ Paxos, RAFT, Primary-backup replication

* Strict Serializability
+ 2PL, Spanner
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Learning Objectives

* Reasoning about concurrency
» Reasoning about failure
* Reasoning about performance

* Building systems that correctly handle concurrency and failure

» Knowing specific system designs and design components
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Conclusion

* Distributed Systems
+ Multiple machines doing something together
* Pretty much everywhere and everything computing now

 “Systems”
+ Hide complexity and do the heavy lifting (i.e., interesting!)
+ Scalability, fault tolerance, guarantees
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