
COS320: Compiling Techniques

Zak Kincaid

March 22, 2022



Logistics

• HW3 due today
• HW4 released today, due April 11th. You will implement a typechecker and translator for

an extension of Oat.



Oat v2

• Specified by a (fairly large) type system
• ∼20 judgements, ∼80 inference rules
• Invest some time in making sure you understand how to read them

• Adds several features to the Oat language:
• Memory safety

• nullable and non-null references. Type system enforces no null pointer dereferences.
• Run-time array bounds checking (like Java, OCaml)

• Mutable record types
• Subtyping

• ref <: ref?: non-null references are a subtype of nullable references
• Record subtyping: width but not depth (why?)



Compiling with Types



• Intrinsic view: an ill-typed program is not a program at all
• Compiler translates programs in the source language to programs in the target language

• Well-typed source programs translate to well-typed target programs

• Compiler may reject ill-typed source programs
• Compiler must ensure that target program is well-typed

• IR may also have its own type system (LLVM)
• Your backend does not check types, but does throw exceptions for (some) ill-typed programs
• LLVM does check types: use --clang to check that your front-end produces type-correct

code



• Intrinsic view: an ill-typed program is not a program at all
• Compiler translates programs in the source language to programs in the target language

• Well-typed source programs translate to well-typed target programs
• Compiler may reject ill-typed source programs

• Compiler must ensure that target program is well-typed
• IR may also have its own type system (LLVM)

• Your backend does not check types, but does throw exceptions for (some) ill-typed programs
• LLVM does check types: use --clang to check that your front-end produces type-correct

code



• Intrinsic view: an ill-typed program is not a program at all
• Compiler translates programs in the source language to programs in the target language

• Well-typed source programs translate to well-typed target programs
• Compiler may reject ill-typed source programs
• Compiler must ensure that target program is well-typed

• IR may also have its own type system (LLVM)
• Your backend does not check types, but does throw exceptions for (some) ill-typed programs
• LLVM does check types: use --clang to check that your front-end produces type-correct

code



• Intrinsic view: an ill-typed program is not a program at all
• Compiler translates programs in the source language to programs in the target language

• Well-typed source programs translate to well-typed target programs
• Compiler may reject ill-typed source programs
• Compiler must ensure that target program is well-typed

• IR may also have its own type system (LLVM)
• Your backend does not check types, but does throw exceptions for (some) ill-typed programs
• LLVM does check types: use --clang to check that your front-end produces type-correct

code



We can think of compilation as translation of derivations of judgements from a source
language to a target language
• Each kind of judgement has a different translation category. E.g.,

• Well-formed types in source become well-formed types in target
• Expressions in source become (operand, instruction list) pairs in target
• ...

• Each inference rule corresponds to a case within that category



Oat v1 (HW3) – well-formed types

Judgements take the form:
• ` t: “t is a well-formed type” (ty)
• `r ref: “ref is a well-formed reference type” (rty)
• `rt rt: “rt is a well-formed return type” (ret_ty)

TInt

` int

TBool

` bool

TRef
`r ref

` ref

RString

`r string

RArray
` t

`r t[]

RFun
` t1 . . . ` tn `rt rt

`r (t1, . . . , tn) → rt

RTVoid

`rt void

RTTyp
` t
`rt t



LLVMlite well-formed types
Judgements take the form:

• T ` t : With named types T, t is a well-formed type
• T `s t : With named types T, t is a well-formed simple type
• T `r t : With named types T, t is a well-formed reference type
• T `rt t : With named types T, t is a well-formed return type
LLBool

T `s i1

LLInt

T `s i64

LLPtr
T `r ref
T `s ref∗

LLTuple
T ` t1 . . . T ` tn

T ` {t1, . . . , tn}

LLArray
T ` t

T ` [n x t]
n ∈ N

LLSimple
`s t
` t

LLRTVoid

T `rt void

LLRTSimple
T `s t
T `rt t

LLRChar

T `r i8

LLRType
T ` t
T `r t

LLRFun
T `rt rt T `s t1 . . . T `s tn

T `r rt(t1, . . . , tn)

LLNamed

T ` %uid
%uid ∈ T



Translating well-formed types

• Each well-formed Oat type is translated to a well-formed LLVM type
• types → simple types (cmp_ty)
• reference types → reference types (cmp_rty)
• return types → return types (cmp_ret_ty)

• Use⇝ to denote translation of derivations



Translating well-formed types

Suppose we have a well-formed type Oat type, ` t. There are three inference rules:
TInt

` int

TBool

` bool

TRef
`r ref

` ref

Each has a corresponding case:

•

TInt
` int

⇝
LLInt

`s i64


•

TBool
` bool

⇝
LLBool

`s i1



•

TRef
`r ref

` ref

⇝
LLPtr

`r t
`s t∗

, where (`r ref)⇝ (`r t)



Translating well-formed types

Suppose we have a well-formed type Oat type, ` t. There are three inference rules:
TInt

` int

TBool

` bool

TRef
`r ref

` ref

Each has a corresponding case:

•

TInt
` int

⇝
LLInt

`s i64


•

TBool
` bool

⇝
LLBool

`s i1


•

TRef
`r ref

` ref

⇝
LLPtr

`r t
`s t∗

, where (`r ref)⇝ (`r t)



Translating well-formed array types

• In Oat v2, arrays accesses are checked at runtime
• Recall: Can implement run-time array access checking by allocating additional memory at

the beginning of the array to store its size
• In Oat v1, arrays accesses are unchecked, but for forwards-compatibility we represent

arrays in the same way.

RArray
` t

`r t[]
⇝

LLRType

LLTuple

LLSimple

LLInt
`s i64

` i64
LLArray

LLSimple
`s t′

` t′

` [0xt′]
` {i64, [0xt′]}

`r {i64, [0xt′]}

where ` t⇝ `s t′



Translating well-formed array types

• In Oat v2, arrays accesses are checked at runtime
• Recall: Can implement run-time array access checking by allocating additional memory at

the beginning of the array to store its size
• In Oat v1, arrays accesses are unchecked, but for forwards-compatibility we represent

arrays in the same way.

RArray
` t

`r t[]
⇝

LLRType

LLTuple

LLSimple

LLInt
`s i64

` i64
LLArray

LLSimple
`s t′

` t′

` [0xt′]
` {i64, [0xt′]}

`r {i64, [0xt′]}

where ` t⇝ `s t′



Summary of type translation

Succint notation: J` JK = J′ denotes that a derivation with root J translates to a derivation
with root J′

• J` intK =`s i64

• J` boolK =`s i1

• J` refK =`s t∗, where `r t = J`r refK
• J`r stringK =`r i8

• J`r t[]K =`r {i64, [0xt′]}, where `s t′ = J` tK
• J`r (t1, . . . , tn) → rtK =`rt rt′(t′1, . . . , t′n), where

• `rt rt = J`rt rtK,
• `s t′1 = J` t1K, …, `s t′n = J` tnK

• J`rt voidK =`rt void

• J`rt tK =`rt t, where `s t = J` tK
(see: cmp_ty, cmp_rty, cmp_ret_ty in HW3)



Well-formed codestreams

Judgements take the form
• Γ ` s ⇒ Γ′: “under type environment Γ, code stream s is well-formed and results in type

environment Γ′”
• Γ ` opn : t: “under type environment Γ, operand opn has type t”

Id

Γ ` id : t
Γ(id) = t

Num

Γ ` n : i64
n ∈ Z

Add
Γ ` opn1 : i64 Γ ` opn2 : i64

Γ ` %uid = add i64 opn1, opn2 ⇒ Γ{%uid 7→ i64}
%uid /∈ dom(Γ)

Seq
Γ ` s1 ⇒ Γ′ Γ′ ` s2 ⇒ Γ′′

Γ ` s1, s2 ⇒ Γ′′

Base

Γ ` ϵ ⇒ Γ . . . lots more



Well-typed expressions

Var

Γ ` x : Γ(x)

Add
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int . . .

Expression compilation (cmp_exp) translates a type judgement Γ ` e : t to
• A codestream judgement Γll ` s ⇒ Γ′

ll, and
• An operand judgement Γ′

ll ` opn : tll



How can translate Γ ` x : t (i.e., Var)?

• Need a symbol table ctxt, which maps Oat identifiers to LLVMlite operand judgements
• The operand associated with a variable x is a pointer to the memory location associated with x

• To compute JΓ ` x : tK(ctxt), first let (id, t∗) = ctxt(x), then:
• Define JctxtK to be the (LLVM) type environment associated with ctxt

• JϵK = ϵ (empty context translates to empty context)
• Jctxt, x 7→ (id, t)K = Γll, id 7→ t, where JctxtK = Γll

• Codestream: JctxtK ` %uid = load t, t* id ⇒ JctxtK{%uid 7→ t}
• Operand: JctxtK{%uid 7→ t} ` %uid : t

How can we translate Γ ` e1 + e2 : int (i.e., Add)?
• Let (JctxtK ` s1 ⇒ Γ1,Γ1 ` opn1 : i64) = Je1K(ctxt)
• Let (Γ1 ` s2 ⇒ Γ2,Γ2 ` opn2 : i64) = Je2K(ctxt)
• Codestream: JctxtK ` s1, s2,%uid = add i64 opn1, opn2) ⇒ Γ2{%uid 7→ i64}
• Operand: Γ2{%uid 7→ i64} ` %uid : i64



How can translate Γ ` x : t (i.e., Var)?
• Need a symbol table ctxt, which maps Oat identifiers to LLVMlite operand judgements

• The operand associated with a variable x is a pointer to the memory location associated with x

• To compute JΓ ` x : tK(ctxt), first let (id, t∗) = ctxt(x), then:
• Define JctxtK to be the (LLVM) type environment associated with ctxt

• JϵK = ϵ (empty context translates to empty context)
• Jctxt, x 7→ (id, t)K = Γll, id 7→ t, where JctxtK = Γll

• Codestream: JctxtK ` %uid = load t, t* id ⇒ JctxtK{%uid 7→ t}
• Operand: JctxtK{%uid 7→ t} ` %uid : t

How can we translate Γ ` e1 + e2 : int (i.e., Add)?
• Let (JctxtK ` s1 ⇒ Γ1,Γ1 ` opn1 : i64) = Je1K(ctxt)
• Let (Γ1 ` s2 ⇒ Γ2,Γ2 ` opn2 : i64) = Je2K(ctxt)
• Codestream: JctxtK ` s1, s2,%uid = add i64 opn1, opn2) ⇒ Γ2{%uid 7→ i64}
• Operand: Γ2{%uid 7→ i64} ` %uid : i64



How can translate Γ ` x : t (i.e., Var)?
• Need a symbol table ctxt, which maps Oat identifiers to LLVMlite operand judgements

• The operand associated with a variable x is a pointer to the memory location associated with x
• To compute JΓ ` x : tK(ctxt), first let (id, t∗) = ctxt(x), then:

• Define JctxtK to be the (LLVM) type environment associated with ctxt
• JϵK = ϵ (empty context translates to empty context)
• Jctxt, x 7→ (id, t)K = Γll, id 7→ t, where JctxtK = Γll

• Codestream: JctxtK ` %uid = load t, t* id ⇒ JctxtK{%uid 7→ t}
• Operand: JctxtK{%uid 7→ t} ` %uid : t

How can we translate Γ ` e1 + e2 : int (i.e., Add)?
• Let (JctxtK ` s1 ⇒ Γ1,Γ1 ` opn1 : i64) = Je1K(ctxt)
• Let (Γ1 ` s2 ⇒ Γ2,Γ2 ` opn2 : i64) = Je2K(ctxt)
• Codestream: JctxtK ` s1, s2,%uid = add i64 opn1, opn2) ⇒ Γ2{%uid 7→ i64}
• Operand: Γ2{%uid 7→ i64} ` %uid : i64



How can translate Γ ` x : t (i.e., Var)?
• Need a symbol table ctxt, which maps Oat identifiers to LLVMlite operand judgements

• The operand associated with a variable x is a pointer to the memory location associated with x
• To compute JΓ ` x : tK(ctxt), first let (id, t∗) = ctxt(x), then:

• Define JctxtK to be the (LLVM) type environment associated with ctxt
• JϵK = ϵ (empty context translates to empty context)
• Jctxt, x 7→ (id, t)K = Γll, id 7→ t, where JctxtK = Γll

• Codestream: JctxtK ` %uid = load t, t* id ⇒ JctxtK{%uid 7→ t}
• Operand: JctxtK{%uid 7→ t} ` %uid : t

How can we translate Γ ` e1 + e2 : int (i.e., Add)?

• Let (JctxtK ` s1 ⇒ Γ1,Γ1 ` opn1 : i64) = Je1K(ctxt)
• Let (Γ1 ` s2 ⇒ Γ2,Γ2 ` opn2 : i64) = Je2K(ctxt)
• Codestream: JctxtK ` s1, s2,%uid = add i64 opn1, opn2) ⇒ Γ2{%uid 7→ i64}
• Operand: Γ2{%uid 7→ i64} ` %uid : i64



How can translate Γ ` x : t (i.e., Var)?
• Need a symbol table ctxt, which maps Oat identifiers to LLVMlite operand judgements

• The operand associated with a variable x is a pointer to the memory location associated with x
• To compute JΓ ` x : tK(ctxt), first let (id, t∗) = ctxt(x), then:

• Define JctxtK to be the (LLVM) type environment associated with ctxt
• JϵK = ϵ (empty context translates to empty context)
• Jctxt, x 7→ (id, t)K = Γll, id 7→ t, where JctxtK = Γll

• Codestream: JctxtK ` %uid = load t, t* id ⇒ JctxtK{%uid 7→ t}
• Operand: JctxtK{%uid 7→ t} ` %uid : t

How can we translate Γ ` e1 + e2 : int (i.e., Add)?
• Let (JctxtK ` s1 ⇒ Γ1,Γ1 ` opn1 : i64) = Je1K(ctxt)
• Let (Γ1 ` s2 ⇒ Γ2,Γ2 ` opn2 : i64) = Je2K(ctxt)
• Codestream: JctxtK ` s1, s2,%uid = add i64 opn1, opn2) ⇒ Γ2{%uid 7→ i64}
• Operand: Γ2{%uid 7→ i64} ` %uid : i64



Summary

• Semantic analysis phase takes AST as input, constructs symbol table and performs
well-formedness checks

• Well-formedness derivations can impact compilation. E.g.,
• x.field gets compiled differently depending on the type of x
• We may have to emit bitcasts for uses of subsumption

• Compiler translates derivations of well-formedness judgements in the source language to
derivations of well-formedness judgements in the target language

• In an implementation, this viewpoint implicit
• Don’t need to do all the bookkeeping involved in manipulating derivations

• But it is helpful for understanding how to organize the translation
• E.g., cmp_exp returns a triple Ll.ty * Ll.operand * stream

In a sense: infers derivations in the source language “on the way down”
builds derivations in the target language “on the way up”
Only remembers the type of the operand (used in some compilation rules).



Summary

• Semantic analysis phase takes AST as input, constructs symbol table and performs
well-formedness checks

• Well-formedness derivations can impact compilation. E.g.,
• x.field gets compiled differently depending on the type of x
• We may have to emit bitcasts for uses of subsumption

• Compiler translates derivations of well-formedness judgements in the source language to
derivations of well-formedness judgements in the target language

• In an implementation, this viewpoint implicit
• Don’t need to do all the bookkeeping involved in manipulating derivations

• But it is helpful for understanding how to organize the translation
• E.g., cmp_exp returns a triple Ll.ty * Ll.operand * stream

In a sense: infers derivations in the source language “on the way down”
builds derivations in the target language “on the way up”
Only remembers the type of the operand (used in some compilation rules).



Summary

• Semantic analysis phase takes AST as input, constructs symbol table and performs
well-formedness checks

• Well-formedness derivations can impact compilation. E.g.,
• x.field gets compiled differently depending on the type of x
• We may have to emit bitcasts for uses of subsumption

• Compiler translates derivations of well-formedness judgements in the source language to
derivations of well-formedness judgements in the target language

• In an implementation, this viewpoint implicit
• Don’t need to do all the bookkeeping involved in manipulating derivations

• But it is helpful for understanding how to organize the translation
• E.g., cmp_exp returns a triple Ll.ty * Ll.operand * stream

In a sense: infers derivations in the source language “on the way down”
builds derivations in the target language “on the way up”
Only remembers the type of the operand (used in some compilation rules).


