
COS320: Compiling Techniques

Zak Kincaid

March 13, 2022

Logistics

• Midterm scores released later today
• HW3 due next Monday

Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization

Semantic Analysis

Semantic analysis

• The semantic analysis phase is responsible for:
• Connecting symbol occurrences to their definitions (i.e., implement scoping rules)
• Checking that the AST is well-typed
• Various other well-formedness checks not captured by the grammar (e.g., break must appear

inside a for, while, or switch)

• Semantic analysis phase can report warnings (potential problems) or errors (severe
problems that must be resolved in order to compile)

• ex.c:4:5: warning: assignment makes integer from pointer without a cast
• ex.c:3:11: error: ‘i’ undeclared (first use in this function)

• Main data structure manipulated by semantic analysis: symbol table
• Mapping from symbols to information about those symbols (type, location in source text, ...)
• Symbol table is used to help translation into IR
• Semantic analysis may also decorate AST (e.g., attach type information to expressions, or

replace symbols with references to their symbol table entry)

Semantic analysis

• The semantic analysis phase is responsible for:
• Connecting symbol occurrences to their definitions (i.e., implement scoping rules)
• Checking that the AST is well-typed
• Various other well-formedness checks not captured by the grammar (e.g., break must appear

inside a for, while, or switch)
• Semantic analysis phase can report warnings (potential problems) or errors (severe

problems that must be resolved in order to compile)
• ex.c:4:5: warning: assignment makes integer from pointer without a cast
• ex.c:3:11: error: ‘i’ undeclared (first use in this function)

• Main data structure manipulated by semantic analysis: symbol table
• Mapping from symbols to information about those symbols (type, location in source text, ...)
• Symbol table is used to help translation into IR
• Semantic analysis may also decorate AST (e.g., attach type information to expressions, or

replace symbols with references to their symbol table entry)

Semantic analysis

• The semantic analysis phase is responsible for:
• Connecting symbol occurrences to their definitions (i.e., implement scoping rules)
• Checking that the AST is well-typed
• Various other well-formedness checks not captured by the grammar (e.g., break must appear

inside a for, while, or switch)
• Semantic analysis phase can report warnings (potential problems) or errors (severe

problems that must be resolved in order to compile)
• ex.c:4:5: warning: assignment makes integer from pointer without a cast
• ex.c:3:11: error: ‘i’ undeclared (first use in this function)

• Main data structure manipulated by semantic analysis: symbol table
• Mapping from symbols to information about those symbols (type, location in source text, ...)
• Symbol table is used to help translation into IR
• Semantic analysis may also decorate AST (e.g., attach type information to expressions, or

replace symbols with references to their symbol table entry)

Types

• Type checking catches errors at compile time, eliminating a class of mistakes that would
otherwise lead to run-time errors

• Type information is sometimes necessary for code generation
• Floating-point + is not the same instruction as integer + is not the same as pointer/integer +

• pointer/integer compiled differently depending on pointer type
• Assignment x = y compiled differently if y is an int or a struct

What is a type?

• Intrinsic view (Church-style): a type is syntactically part of a term.
• A term that cannot be typed is not a term at all
• Types do not have inherent meaning – they are just used to define the syntax of a program

• Extrinsic view (Curry-style): a type is a property of a term.
• For any term and every type, either the term has that type or not
• A term may have multiple types
• A term may have no types

Alonzo Church Haskell Curry

What is a type system?

A type system consists of a system of judgements and inference rules
• (Extrinsic view) A judgement is a claim, which may or may not be valid

• ` 3 : int – “3 has type integer”
• ` (1 + 2) : bool – “(1+2) has type boolean”
• A type system might involve many different kinds of judgement (well-typed expressions,

well-formed types, well-formed statements, ...)

• Inference rules are used to derive valid judgements from other valid judgements.

Add
` e1 : int ` e2 : int

` e1 + e2 : int

Read: “If e1 and e2 have type int, so does e1 + e2”

Inference rules, generally

An inference rule consists of a list of premises J1, ..., Jn and one conclusion J (and optionally a
side-condition), typically written as:

J1 J2 · · · Jn

J
Side-condition

• Side-condition: additional premise, but not a judgement
• Read top-down: If J1 and J2 and ... and Jn are valid (and the side condition holds) then J is

valid.
• Read bottom-up: To prove J is valid, sufficient to prove J1, J2, ... Jn are valid (+ side

condition)

A simple expression language

• Syntax of expressions

<Exp> ::=<Var> | <Int>
| <Exp>+<Exp> | <Exp>*<Exp>
| <Exp>∧<Exp> | <Exp>∨<Exp>
| <Exp>≤<Exp> | <Exp>=<Exp>

| if <Exp> then <Exp> else <Exp>

• 3 + (2 ∧ 0) is syntactically well-formed, but not well-typed
• Is x + 1 well-typed?

Type judgements

• A type environment is a symbol table mapping symbols to types.
• E.g., [x 7→ int, y 7→ bool, z 7→ int]: x and z are ints, y is a bool
• Notation: type environment denoted by Γ
• Notation: Γ{x 7→ t} is a functional update

Γ{x 7→ t}(y) =
{

t if x = y
Γ(y) otherwise

• E.g., [x 7→ int, y 7→ int]{x 7→ bool} = [x 7→ bool, y 7→ int]

• A type judgement takes the form Γ ` e : t
• Read “Under the type environment Γ, the expression e has type t”

Type judgements

• A type environment is a symbol table mapping symbols to types.
• E.g., [x 7→ int, y 7→ bool, z 7→ int]: x and z are ints, y is a bool
• Notation: type environment denoted by Γ
• Notation: Γ{x 7→ t} is a functional update

Γ{x 7→ t}(y) =
{

t if x = y
Γ(y) otherwise

• E.g., [x 7→ int, y 7→ int]{x 7→ bool} = [x 7→ bool, y 7→ int]

• A type judgement takes the form Γ ` e : t
• Read “Under the type environment Γ, the expression e has type t”

Inference rules

Int

Γ ` n : int
n ∈ {...,−1, 0, 1, ...}

Var

Γ ` x : t
Γ(x) = t

Add
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

And
Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 ∧ e2 : bool

Leq
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 ≤ e2 : bool

If
Γ ` e1 : bool Γ ` e2 : t Γ ` e3 : t

Γ ` if e1 then e2 else e3 : t

Derivations

• A derivation or proof tree is a tree where each node is labelled by a judgement, and edges
connect premises to a conclusion according to some inference rule.

• Leaves of the tree are axioms (inference rules w/o premises)
Derivation of x : int ` 2 + x ≤ 10 : bool:

Leq

Add

Int
x : int ` 2 : int

Var
x : int ` x : int

x : int ` 2 + x : int
Int

x : int ` 10 : int

x : int ` 2 + x ≤ 10 : bool

Derivation for x : int ` if x ≤ 0 then x else − 1 ∗ x : int:

If

Leq

Var
x : int ⊢ x : int

Int
x : int ⊢ −1 : int

x : int ⊢ x ≤ 0 : bool
Var

x : int ⊢ x : int
Mul

Int
x : int ⊢ −1 : int

Var
x : int ⊢ x : int

x : int ⊢ −1 ∗ x : int

x : int ⊢ if x ≤ 0 then x else − 1 ∗ x : int

Type checking

• Goal of a type checker: given a context Γ, expression e, and type t, determine whether a
derivation of the judgement Γ ` e : t exists.

• Method: recurse on the structure of the AST, applying inference rules “bottom-up”

Binders & functions: scope logic

Let
Γ ` e1 : t1 Γ{x 7→ t1} ` e2 : t

Γ ` let x = e1 in e2 : t

Fun
Γ{x 7→ t1} ` e : t2

Γ ` fun (x : t1)->e : t1 → t2

App
Γ ` e1 : t1 → t2 Γ ` e2 : t1

Γ ` e1 e2 : t2

Type inference

• Goal of type inference: given a context Γ and expression e, determine a type t for which
there is a derivation of the judgement Γ ` e : t.

• Method: (again) recurse on the structure of the AST, applying inference rules “bottom-up”
• This only works because we have a very simple type system

• OCaml type inference (Hindley-Milner): recurse on the structure of the AST to produce a
constraint system, then solve the constraints

Type soundness

Well typed programs cannot “go wrong”

Robin Milner

• More formally: if ` e : t is derivable, then evaluating e either fails to terminate or yields a
value of type t

• Note: for our language (extension of simply-typed lambda calculus with integers and
booleans), we have something stronger: evaluating e always yields a value of type t

Well-formed types

• In languages with type definitions, need additional rules to define well-formed types
• Judgements take the form H ` t

• H is set of type names
• t is a type
• H ` t – “Assuming H names well-formed types, t is a well-formed type”

Int

H ` int

Bool

H ` bool

Arrow
H ` t1 H ` t2

H ` t1 → t2

Named

H ` s
s ∈ H

• Note: also need to modify the typing rules & judgements. E.g.,

Fun
H ` t1 H,Γ{x 7→ t1} ` e : t2
H,Γ ` fun (x : t1)->e : t1 → t2

Well-formed types

• In languages with type definitions, need additional rules to define well-formed types
• Judgements take the form H ` t

• H is set of type names
• t is a type
• H ` t – “Assuming H names well-formed types, t is a well-formed type”

Int

H ` int

Bool

H ` bool

Arrow
H ` t1 H ` t2

H ` t1 → t2

Named

H ` s
s ∈ H

• Note: also need to modify the typing rules & judgements. E.g.,

Fun
H ` t1 H,Γ{x 7→ t1} ` e : t2
H,Γ ` fun (x : t1)->e : t1 → t2

Well-formed types

• In languages with type definitions, need additional rules to define well-formed types
• Judgements take the form H ` t

• H is set of type names
• t is a type
• H ` t – “Assuming H names well-formed types, t is a well-formed type”

Int

H ` int

Bool

H ` bool

Arrow
H ` t1 H ` t2

H ` t1 → t2

Named

H ` s
s ∈ H

• Note: also need to modify the typing rules & judgements. E.g.,

Fun
H ` t1 H,Γ{x 7→ t1} ` e : t2
H,Γ ` fun (x : t1)->e : t1 → t2

Statements

• In languages with statements, need additional rules to defined well-formed statements
• E.g., judgements may take the form D; Γ; rt ` s

• D maps type names to their definitions
• Γ is a type environment (variables → types)
• rt is a type
• D; Γ; rt ` s – “with type definitions D, assuming type environment Γ, s is a valid statement

within the context of a function that returns a value of type rt”

Assign
Γ ` e : Γ(x)

D; Γ; rt ` x := e

Return
Γ ` e : rt

D; Γ; rt ` return e

Decl
Γ ` e : t D; Γ{x 7→ t}; rt ` s2

D; Γ; rt ` var x = e; s2

Statements

• In languages with statements, need additional rules to defined well-formed statements
• E.g., judgements may take the form D; Γ; rt ` s

• D maps type names to their definitions
• Γ is a type environment (variables → types)
• rt is a type
• D; Γ; rt ` s – “with type definitions D, assuming type environment Γ, s is a valid statement

within the context of a function that returns a value of type rt”
Assign
Γ ` e : Γ(x)

D; Γ; rt ` x := e

Return
Γ ` e : rt

D; Γ; rt ` return e

Decl
Γ ` e : t D; Γ{x 7→ t}; rt ` s2

D; Γ; rt ` var x = e; s2

Additional aspects

• In OCaml, can have a variable and a type with the same name
• Multiple namespaces ⇒ multiple environments / symbol tables

• Parametric polymorphism
• E.g., fun x -> x in ocaml has type ’a -> ’a
• Finite representation of infinitely many typings

• Subtyping (e.g., object-oriented languages) – next time
• Related: casting, coersion

