Static Single Assignment form
SSA

- Each %uid appears on the left-hand-side of at most one assignment in a CFG

  ```
  if (x < 0) {
    y := y - x;
  } else {
    y := y + x;
  }
  return y
  ```

  ```
  if (x_0 < 0) {
    y_1 := y_0 - x_0;
  } else {
    y_2 := y_0 + x_0;
  }
  y_3 := \phi(y_1, y_2)
  return y_3
  ```

- Recall: \(y_3 := \phi(y_1, y_2) \) picks either \(y_1 \) or \(y_2 \) (whichever one corresponds to the branch that is actually taken) and stores it in \(y_3 \)

- Well-formedness condition: uids must be defined before they are used.
Register allocation

- SSA form reduces register pressure
 - Each variable x is replaced by potentially many “subscripted” variables x_1, x_2, x_3, \ldots
 - (At least) one for each definition of x
 - Each x_i can potentially be stored in a different memory location
Register allocation

- SSA form reduces register pressure
 - Each variable x is replaced by potentially many “subscripted” variables x_1, x_2, x_3, \ldots
 - (At least) one for each definition of x
 - Each x_i can potentially be stored in a different memory location
Register allocation

- SSA form reduces register pressure
 - Each variable x is replaced by potentially many “subscripted” variables $x_1, x_2, x_3,...$
 - (At least) one for each definition of x
 - Each x_i can potentially be stored in a different memory location
- Interference graphs for SSA programs are *chordal* (every cycle contains a chord)
 - Chordal graphs can be colored optimally in polytime
 - *But* optimal translation out of SSA form is intractable
Dead assignment elimination

Simple algorithm for eliminating assignment\(^1\) instructions that are never used:

\[
\text{while some } \% x \text{ has no uses do}
\]

\[
\quad \text{Remove definition of } \% x \text{ from CFG;}
\]

- SSA conversion ⇒ more assignments are eliminated

\[
\begin{align*}
0 & := x \\
1 & := x \\
\text{return } 2 \times x
\end{align*}
\]

\(^1\text{does not eliminate dead stores}\)
Dead assignment elimination

Simple algorithm for eliminating assignment\(^1\) instructions that are never used:

\[
\text{while some } \%x \text{ has no uses do}
\]

\[
\quad \text{Remove definition of } \%x \text{ from CFG;}
\]

- SSA conversion ⇒ more assignments are eliminated

\begin{align*}
\text{x} & := 0 \\
\text{x} & := 1 \\
\text{return 2} \times \text{x}
\end{align*}

\begin{align*}
\text{x}_0 & := 0 \\
\text{x}_1 & := 1 \\
\text{return 2} \times \text{x}_1
\end{align*}

\(^{1}\)does not eliminate dead stores
Dead assignment elimination

Simple algorithm for eliminating assignment\(^1\) instructions that are never used:

\[
\text{while some } \%x \text{ has no uses do}
\]

\[
\begin{align*}
\text{Remove definition of } \%x \text{ from CFG;} \\
\text{SSA conversion } \Rightarrow \text{ more assignments are eliminated}
\end{align*}
\]

\[
\begin{align*}
x & := 0 \\
x & := 1 \\
\text{return } 2 \times x
\end{align*}
\]

\[
\begin{align*}
x_0 & := 0 \\
x_1 & := 1 \\
\text{return } 2 \times x_1
\end{align*}
\]

\(^1\text{does not eliminate dead stores}\)
Dead assignment elimination

Simple algorithm for eliminating assignment\(^1\) instructions that are never used:

```plaintext
while some \( \%x \) has no uses do
    Remove definition of \( \%x \) from CFG;
```

- SSA conversion \(\Rightarrow \) more assignments are eliminated

```plaintext
x := 0
x := 1
return 2 * x
```

\[\text{SSA conversion}\]

```plaintext
x_1 := 1
return 2 * x_1
```

\(^1\)does not eliminate dead stores
Recall: constant propagation

- The goal of constant propagation: determine at each instruction I a constant environment
 - A constant environment is a symbol table mapping each variable x to one of:
 - an integer n (indicating that x's value is n whenever the program is at I)
 - \top (indicating that x might take more than one value at I)
 - \bot (indicating that x may take no values at run-time – I is unreachable)

- Say that the assignment IN, OUT is conservative if
 1. $\text{IN}[s]$ assigns each variable \top
 2. For each node $bb \in N$, $\text{OUT}[bb] \equiv \text{post}_{CP}(bb, \text{IN}[bb])$
 3. For each edge $src \rightarrow dst \in E$, $\text{IN}[dst] \equiv \text{OUT}[src]$
(Dense) constant propagation performance

- **Memory requirements:** $\Theta(|N| \cdot |Var|)$
 - Constant environment has size $\Theta(|Var|)$, need to track $\Theta(1)$ per node
- **Time requirements:** $\Theta(|E| \cdot |Var|) = \Theta(|N| \cdot |Var|)$
 - Processing a single node takes $\Theta(1)$ time
 - Each edge is processed $\Theta(|Var|)$ times
 - Height of the abstract domain (length of longest strictly ascending sequence): $|Var| + 1$
- Can we do better?
Sparse constant propagation

- Idea: SSA connects variable definitions directly to their uses
 - Don’t need to store the value of every variable at every program point
 - Don’t need to propagate changes through irrelevant blocks
Sparse constant propagation

- Idea: SSA connects variable definitions directly to their uses
 - Don't need to store the value of every variable at every program point
 - Don’t need to propagate changes through irrelevant blocks
- Can think of SSA as a graph, where edges correspond to data flow rather than control flow
 - Define $rhs(\%x)$ to be the right hand side of the unique assignment to $\%x$
 - Define $succ(\%x) = \{\%y : rhs(\%y) \text{ reads } \%x\}$
Sparse constant propagation

- Idea: SSA connects variable definitions directly to their uses
 - Don't need to store the value of every variable at every program point
 - Don't need to propagate changes through irrelevant blocks
- Can think of SSA as a graph, where edges correspond to data flow rather than control flow
 - Define $rhs(\%x)$ to be the right hand side of the unique assignment to $\%x$
 - Define $succ(\%x) = \{\%y : rhs(\%y) \text{ reads } \%x\}$
- Local specification for constant propagation:
 - scp is the smallest function $Uid \rightarrow \mathbb{Z} \cup \{\top, \bot\}$ such that
 - If G contains no assignments to $\%x$, then $scp(\%x) = \top$
 - For each instruction $\%x = e$, $scp(\%x) = eval(e, scp)$
 - For each instruction $\%x = \phi(\%y, \%z)$, $scp(\%x) = scp(\%y) \sqcup scp(\%z)$
scp(%x) = \begin{cases} \bot & \text{if } %x \text{ has an assignment} \\ T & \text{otherwise} \end{cases}

\text{work} \leftarrow \{ %x \in Uid : %x \text{ is defined} \};

\text{while } \text{work} \neq \emptyset \text{ do }
 \begin{align*}
 & \text{Pick some } %x \text{ from work;} \\
 & \text{work} \leftarrow \text{work} \setminus \{ %x \}; \\
 & \text{if } \text{rhs}(%x) = \phi(%y, %z) \text{ then} \\
 & \quad v \leftarrow \text{scp}(%y) \sqcup \text{scp}(%z) \\
 & \text{else} \\
 & \quad v \leftarrow \text{eval(rhs}(%x), \text{scp}) \\
 & \text{if } v \neq \text{scp}(%x) \text{ then} \\
 & \quad \text{scp}(%x) \leftarrow v, \\
 & \quad \text{work} \leftarrow \text{work} \cup \text{succ}(%x)
 \end{align*}
Computational complexity of constant propagation

<table>
<thead>
<tr>
<th></th>
<th>Dense</th>
<th>Sparse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>$\Theta(</td>
<td>N</td>
</tr>
<tr>
<td>Time</td>
<td>$\Theta(</td>
<td>N</td>
</tr>
</tbody>
</table>

- **However**, observe that we only find constants for uids, not stack slots.
- Again, advantageous to use uids to represent variable whenever possible
Computing SSA
(High-level) SSA conversion

• Replace each definition $x = e$ with a $x_i = e$ for some unique subscript i
• Replace each use of a variable y with y_i, where the ith definition of y is the unique reaching definition
(High-level) SSA conversion

- Replace each definition $x = e$ with a $x_i = e$ for some unique subscript i
- Replace each use of a variable y with y_i, where the ith definition of y is the unique reaching definition
- If multiple definitions reach a single use, then they must be merged using a ϕ (phi) statement

```plaintext
y := 0;
while (x >= 0) {
    x := x - 1;
    y := y + x;
}
return y
```

```
y0 := 0;
while (true) {
    x2 = \phi(x0, x1)
    y2 = \phi(y0, y1)
    if (x2 < 0) break;
    x1 := x2 - 1;
    y1 := y2 + x1;
}
return y2
```
Placing ϕ statements

- Easy, inefficient solution: place a ϕ statement for each variable location at each join point
 - A join point is a node in the CFG with more than one predecessor

A join point is a node in the CFG with more than one predecessor.

\(^2\) The entry node of the CFG is considered to be an implicit definition of every variable.
Placing ϕ statements

- Easy, inefficient solution: place a ϕ statement for each variable location at each *join point*
 - A *join point* is a node in the CFG with more than one predecessor
- Better solution: place a ϕ statement for variable x at location n exactly when the following *path convergence criterion* holds: there exist a pair of non-empty paths P_1, P_2 ending at n such that
 1. The start node of both P_1 and P_2 defines x\(^2\)
 2. The only node shared by P_1 and P_2 is n
- The path convergence criterion can be implemented using the concept of *iterated dominance frontiers*

\(^2\)The entry node of the CFG is considered to be an implicit definition of every variable
Dominance

- Let $G = (N, E, s)$ be a control flow graph
- We say that a node $d \in N$ dominates a node $n \in N$ if every path from s to n contains d
 - Every node dominates itself
 - d strictly dominates n if d is not n
 - d immediately dominates n if d strictly dominates n and but does not strictly dominate any strict dominator of n.
Dominance

• Let $G = (N, E, s)$ be a control flow graph

• We say that a node $d \in N$ dominates a node $n \in N$ if every path from s to n contains d
 • Every node dominates itself
 • d strictly dominates n if d is not n
 • d immediately dominates n if d strictly dominates n and but does not strictly dominate any strict dominator of n.

• Observe: dominance is a partial order on N
 • Every node dominates itself (reflexive)
 • If n_1 dominates n_2 and n_2 dominates n_3 then n_1 dominates n_3 (transitive)
 • If n_1 dominates n_2 and n_2 dominates n_1 then n_1 must be n_2 (anti-symmetric)
If we draw an edge from every node to its immediate dominator, we get a data structure called the *dominator tree*.

- (Essentially the Haase diagram of the dominated-by order)
Dominance and SSA

- SSA well-formedness criteria
 - If $\%x$ is used in a non-ϕ statement in block n, then the definition of $\%x$ must dominate n
 - If $\%x$ is the ith argument of a ϕ function in a block n, then the definition of $\%x$ must dominate the ith predecessor of n.
Dominator analysis

- Let $G = (N, E, s)$ be a control flow graph.
- Define dom to be a function mapping each node $n \in N$ to the set $dom(n) \subseteq N$ of nodes that dominate it.

Local specification:
- $dom(s) = \{s\}$
- For each $p \rightarrow n \in E$, $dom(n) \subseteq \{n\} \cup dom(p)$

Can be solved using dataflow analysis techniques.

In practice: nearly linear time algorithm due to Lengauer & Tarjan.
Dominator analysis

- Let $G = (N, E, s)$ be a control flow graph.
- Define dom to be a function mapping each node $n \in N$ to the set $\text{dom}(n) \subseteq N$ of nodes that dominate it.
- **Local specification:** dom is the largest (equiv. least in superset order) function such that
 - $\text{dom}(s) = \{s\}$
 - For each $p \rightarrow n \in E$, $\text{dom}(n) \subseteq \{n\} \cup \text{dom}(p)$

Can be solved using dataflow analysis techniques. In practice: nearly linear time algorithm due to Lengauer & Tarjan.
Dominator analysis

- Let $G = (N, E, s)$ be a control flow graph.
- Define dom to be a function mapping each node $n \in N$ to the set $dom(n) \subseteq N$ of nodes that dominate it.
- **Local specification:** dom is the largest (equiv. least in superset order) function such that
 - $dom(s) = \{s\}$
 - For each $p \rightarrow n \in E$, $dom(n) \subseteq \{n\} \cup dom(p)$
- Can be solved using dataflow analysis techniques
 - In practice: nearly linear time algorithm due to Lengauer & Tarjan
• Recall: If $\%_0 x$ is the ith argument of a ϕ function in a block n, then the definition of $\%_0 x$ must dominate the ith predecessor of n.

• The **dominance frontier** of a node n is the set of all nodes m such that n dominates a predecessor of m, but does not strictly dominate m itself.

 - $DF(n) = \{ m : (\exists p \in Pred(m). n \in dom(p)) \land (m = n \lor n \notin dom(m)) \}$

• Whenever a node n contains a definition of some uid $\%_0 x$, then any node m in the dominance frontier of n needs a ϕ function for $\%_0 x$.
• $DF(1) = \emptyset$
$DF(1) = \emptyset$
$DF(2) = \{2\}$
\[
\begin{align*}
\text{DF}(1) &= \emptyset \\
\text{DF}(2) &= \{2\} \\
\text{DF}(3) &= \{3, 6\}
\end{align*}
\]
- $DF(1) = \emptyset$
- $DF(2) = \{2\}$
- $DF(3) = \{3, 6\}$
- $DF(4) = \{6\}$
- $DF(5) = \{3, 6\}$
- $DF(6) = \{2\}$
Dominance frontier is not enough!

- Whenever a node \(n \) contains a definition of some uid \(%x \), then any node \(m \) in the dominance frontier of \(n \) needs a \(\phi \) statement for \(%x \).
- \textit{But}, that is not the only place where \(\phi \) statements are needed.
Dominance frontier is not enough!

- Whenever a node \(n \) contains a definition of some uid \(\%x \), then any node \(m \) in the dominance frontier of \(n \) needs a \(\phi \) statement for \(\%x \).
- But, that is not the only place where \(\phi \) statements are needed.
Dominance frontier is not enough!

- Whenever a node n contains a definition of some uid $\%x$, then any node m in the dominance frontier of n needs a ϕ statement for $\%x$.
- *But*, that is not the only place where ϕ statements are needed.
Placing ϕ statements

- Extend dominance frontier to sets of nodes by letting $DF(M) = \bigcup_{m \in M} DF(m)$

- Define the \textit{iterated dominance frontier} $IDF(M) = \bigcup_{i} IDF_{i}(M)$, where
 - $IDF_{0}(M) = DF(M)$
 - $IDF_{i+1}(M) = IDF_{i}(M) \cup IDF(IDF_{i}(M))$

- For any node x, let $Def(x)$ be the set of nodes that define x

- Finally, we can characterize ϕ statement placement: Insert a ϕ statement for x at every node in $IDF(Def(x))$
Placing ϕ statements

- Extend dominance frontier to sets of nodes by letting $DF(M) = \bigcup_{m \in M} DF(m)$

- Define the iterated dominance frontier $IDF(M) = \bigcup_{i} IDF_i(M)$, where
 - $IDF_0(M) = DF(M)$
 - $IDF_{i+1}(M) = IDF_i(M) \cup IDF(IDF_i(M))$

- For any node x, let $Def(x)$ be the set of nodes that define x

- Finally, we can characterize ϕ statement placement:

 Insert a ϕ statement for x at every node in $IDF(Def(x))$
Transforming out of SSA

- The ϕ statement is not executable, so it must be removed in order to generate code.
Transforming out of SSA

- The ϕ statement is not executable, so it must be removed in order to generate code.
- For each ϕ statement $\%x = \phi(\%x_1, \ldots, \%x_k)$ in block n, n must have exactly k predecessors p_1, \ldots, p_k.
- Insert a new block along each edge $p_i \rightarrow n$ that executes $\%x = \%x_i$ (program no longer satisfies SSA property!)
Transforming out of SSA

- The ϕ statement is not executable, so it must be removed in order to generate code.
- For each ϕ statement $\%x = \phi(\%x_1, \ldots, \%x_k)$ in block n, n must have exactly k predecessors p_1, \ldots, p_k.
- Insert a new block along each edge $p_i \rightarrow n$ that executes $\%x = \%x_i$ (program no longer satisfies SSA property!)
- Using a graph coalescing register allocator, often possible to eliminate the resulting move instructions.
SSA overview

- SSA can make analysis and optimization
 - simpler
 - more efficient
 - more accurate
- at the cost of
 - having to compute SSA / maintain SSA invariants
 - complicating code generation
- Most imperative compilers use SSA: LLVM, gcc, HotSpot, mono, v8, spidermonkey, go, ...
- Dominance is the key idea needed to efficiently transform into SSA
 - Will also make an appearance next week when we talk about loop optimizations