COS320: Compiling Techniques

Zak Kincaid

April 14, 2020

Logistics

- HW3 up on codepost
- HW4 due one week from today

Register allocation

Motivation

- Your LLVMlite compiler places each uid in its own stack slot
- Every binary operation is compiled to 2 loads, the operation, and a store
- Loads and stores are expensive
- Register allocation is the problem of determining a mapping from IR-level "virtual registers" to machine registers

Live variables

- A variable x is live at a point n if there is some path starting from n that reads the value of x before writing it.
- Intuition: a variable is live if its value might be needed later in some computation.
- If a variable x is not live, we can free/re-use the memory associated with x
- If two variables are not live at the same time, we can store them in the same memory (ideally, a register)

Live variables

- Live variables is a backwards dataflow analysis problem
- Information flows from control flow successors to their predecessors

Forwards: Compute least IN, OUT s.t.
(1) $\operatorname{IN}[s]=T$
(2) For all $n \in N$, post $_{\mathcal{L}}(n, \operatorname{IN}[n]) \sqsubseteq \operatorname{OUT}[n]$
(3) For all $p \rightarrow n \in E$, OUT $[p] \sqsubseteq \operatorname{IN}[n]$

Backwards: Compute least IN, OUT s.t.
(1) OUT $[n]=\mathrm{T}$ for each return block n
(2) For all $n \in N, \operatorname{pre}_{\mathcal{L}}(n, \mathbf{O U T}[n]) \sqsubseteq \mathbb{I N}[n]$
(3) For all $n \rightarrow s \in E, \operatorname{IN}[s] \sqsubseteq \mathrm{OUT}[n]$

- Backwards analyses work in essentially the same was as forwards analyses

Live variables

- Live variables is a backwards dataflow analysis problem
- Information flows from control flow successors to their predecessors

Forwards: Compute least IN, OUT s.t.
(1) $\operatorname{IN}[s]=T$
(2) For all $n \in N$, post $_{\mathcal{L}}(n, \operatorname{IN}[n]) \sqsubseteq \operatorname{OUT}[n]$
(3) For all $p \rightarrow n \in E$, OUT $[p] \sqsubseteq \operatorname{IN}[n]$

- Live variables as a data flow analysis:

Live variables

- Live variables is a backwards dataflow analysis problem
- Information flows from control flow successors to their predecessors

Forwards: Compute least IN, OUT s.t.
(1) $\operatorname{IN}[s]=\top$
(2) For all $n \in N$, post $_{\mathcal{L}}(n, \operatorname{IN}[n]) \sqsubseteq \mathrm{OUT}[n]$
(3) For all $p \rightarrow n \in E$, OUT $[p] \sqsubseteq \mathbf{I N}[n]$

Backwards: Compute least IN, OUT s.t.
(1) OUT $[n]=\top$ for each return block n
(2) For all $n \in N, \operatorname{pre}_{\mathcal{L}}(n, \operatorname{OUT}[n]) \sqsubseteq \mathrm{IN}[n]$
(3) For all $n \rightarrow s \in E, \operatorname{IN}[s] \sqsubseteq \mathrm{OUT}[n]$

- Backwards analyses work in essentially the same was as forwards analyses
- Live variables as a data flow analysis:
- Abstract domain: $2^{\text {Var }}$
- Existential \Rightarrow order is \subseteq, join is \cup, \top is Var, \perp is \emptyset
- $\operatorname{pre}(e l t, L)=(L \backslash$ kill $(e l t)) \cup$ gen $(e l t)$

Live variables

- Live variables is a backwards dataflow analysis problem
- Information flows from control flow successors to their predecessors

Forwards: Compute least IN, OUT s.t.
(1) $\operatorname{IN}[s]=\top$
2) For all $n \in N$, $\operatorname{post}_{\mathcal{L}}(n, \operatorname{IN}[n]) \sqsubseteq \operatorname{OUT}[n]$
(3) For all $p \rightarrow n \in E$, OUT $[p] \sqsubseteq \mathbf{I N}[n]$

Backwards: Compute least IN, OUT s.t.
(1) OUT $[n]=\mathrm{T}$ for each return block n
(2) For all $n \in N$, $\operatorname{pre}_{\mathcal{L}}(n, \mathbf{O U T}[n]) \sqsubseteq \mathbb{I N}[n]$
(3) For all $n \rightarrow s \in E, \operatorname{IN}[s] \sqsubseteq \mathrm{OUT}[n]$

- Backwards analyses work in essentially the same was as forwards analyses
- Live variables as a data flow analysis:
- Abstract domain: $2^{\text {Var }}$
- Existential \Rightarrow order is \subseteq, join is \cup, T is Var, \perp is \emptyset
- pre $(e l t, L)=(L \backslash$ kill $(e l t)) \cup$ gen $(e l t)$
- $\operatorname{kill}(x:=e)=\{x\}$, kill $(\mathrm{cbr} \mathrm{x}, 11,12)=\emptyset$

Live variables

- Live variables is a backwards dataflow analysis problem
- Information flows from control flow successors to their predecessors

Forwards: Compute least IN, OUT s.t.
(1) $\operatorname{IN}[s]=\top$
2) For all $n \in N$, $\operatorname{post}_{\mathcal{L}}(n, \operatorname{IN}[n]) \sqsubseteq \operatorname{OUT}[n]$
(3) For all $p \rightarrow n \in E$, OUT $[p] \sqsubseteq \mathbf{I N}[n]$

Backwards: Compute least IN, OUT s.t.
(1) OUT $[n]=\mathrm{T}$ for each return block n
(2) For all $n \in N$, $\operatorname{pre}_{\mathcal{L}}(n$, OUT $[n]) \sqsubseteq \operatorname{IN}[n]$
(3) For all $n \rightarrow s \in E, \operatorname{IN}[s] \sqsubseteq \mathrm{OUT}[n]$

- Backwards analyses work in essentially the same was as forwards analyses
- Live variables as a data flow analysis:
- Abstract domain: $2^{\text {Var }}$
- Existential \Rightarrow order is \subseteq, join is \cup, T is Var, \perp is \emptyset
- pre $(e l t, L)=(L \backslash$ kill $(e l t)) \cup$ gen $(e l t)$
- $\operatorname{kill}(x:=e)=\{x\}$, $\operatorname{kill}(\operatorname{cbr} \mathbf{x}, 11,12)=\emptyset$
- $\operatorname{gen}(x:=e)=\{y: y$ in $e\}, \operatorname{gen}(\operatorname{cbr} x, 11,12)=\{x\}$

```
foo(int x, int y) {
    a := x;
    b := y;
    s := 0;
    while (a != b) {
        s := s + a + b;
        if (a > b) {
            a := a - b;
        } else {
            b := b - a;
        }
    }
    return 2 * a + 3 * s;
}
```


Interference graph

- An interference graph for a CFG is an undirected graph (V, I) where
- Vertices $V=$ program variables
- Edges I connect variables x and y iff there is some program point where x and y are simultaneously live
- "Program point" includes intermediate points within basic blocks
- Vertices that are adjacent in the interference graph cannot be stored in the same memory location

Interference graph construction

Interference graph construction

Interference graph construction

Interference graph construction

Interference graph coloring

- A K-coloring of the interference graph is a function $c: V \rightarrow\{1, \ldots, K\}$ such that if x and y are adjacent in I, then $c(x) \neq c(y)$.
- Basic idea (due to Chaitin): if a processor has K registers, then a K-coloring of its interference graph corresponds to a valid memory layout.

Interference graph coloring

- A K-coloring of the interference graph is a function $c: V \rightarrow\{1, \ldots, K\}$ such that if x and y are adjacent in I, then $c(x) \neq c(y)$.
- Basic idea (due to Chaitin): if a processor has K registers, then a K-coloring of its interference graph corresponds to a valid memory layout.
- Problem: Determining whether a graph is K-colorable is NP-complete
- But: we don't need an optimal coloring - any coloring will do
- If we use more colors than we have registers, can spill: place the variable in memory rather than a register
- May need to reserve some registers for intermediate computations (e.g., accessing memory)

Greedy coloring

- Idea: assign colors to nodes in some order
- For each node, assign a color that isn't already assigned to one of its neighbors
- No color available \Rightarrow spill
- If a node has $<K$ neighbors, a color is always available

Greedy coloring

- Idea: assign colors to nodes in some order
- For each node, assign a color that isn't already assigned to one of its neighbors
- No color available \Rightarrow spill
- If a node has $<K$ neighbors, a color is always available
- Process:
- Simplify: choose a node with $<K$ neighbors. Add it to a stack \& remove it from the graph
- Spill: if all nodes have $\geq K$ neighbors, choose one to potentially spill. Add it to a stack \& remove it from the graph.
- Color: traverse the stack, assigining colors to the Simplified vertices, and either color or spill Spilled vertices

Greedy coloring

- Idea: assign colors to nodes in some order
- For each node, assign a color that isn't already assigned to one of its neighbors
- No color available \Rightarrow spill
- If a node has $<K$ neighbors, a color is always available
- Process:
- Simplify: choose a node with $<K$ neighbors. Add it to a stack \& remove it from the graph
- Spill: if all nodes have $\geq K$ neighbors, choose one to potentially spill. Add it to a stack \& remove it from the graph.
- Color: traverse the stack, assigining colors to the Simplified vertices, and either color or spill Spilled vertices
- Not optimal: may use more colors than needed
- fast \& works well in practice.

3-coloring the interference graph

Stack:

3-coloring the interference graph

Stack: t6

3-coloring the interference graph

Stack: t6,x

3-coloring the interference graph

Stack: t6,x,y

3-coloring the interference graph

Stack: t6,x,y,t5

3-coloring the interference graph

Stack: t6,x,y,t5,t4

3-coloring the interference graph

Stack: t6,x,y,t5,t4,t2

3-coloring the interference graph

Stack: t6,x,y,t5,t4,t2

3-coloring the interference graph

Stack: t6,x,y,t5,t4,t2,a

3-coloring the interference graph

Stack: t6,x,y,t5,t4,t2,a,t1

3-coloring the interference graph

Stack: t6,x,y,t5,t4,t2,a,t1,t3

3-coloring the interference graph

Stack: t6,x,y,t5,t4,t2,a,t1,t3,b

3-coloring the interference graph

Stack: t6,x,y,t5,t4,t2,a,t1,t3,b,s

Suppose we have two reserved registers $r a x, r c x$ and three available registers $r 1, r 2, r 3$

Accessing spilled registers

- Problem: we may need to use registers to access the stack slots that we use to store spilled virtual registers
- Easy option: reserve some registers for memory operation (rax and rcx in last slide)

Accessing spilled registers

- Problem: we may need to use registers to access the stack slots that we use to store spilled virtual registers
- Easy option: reserve some registers for memory operation (rax and rcx in last slide)
- Better option: genererate spill code, then re-run register allocator
- Spill code may use new virtual registers
- E.g., if x is spilled in $\mathrm{xloc}, \mathrm{y}$ is spilled in yloc , $x=y \rightsquigarrow t=$ load x loc; store t yloc
- When we re-run the register allocator, we must allocate registers to these virtual registers
- live range for new virtual register is very short
- use some book-keeping to prevent infinite loop

Pre-colored nodes

- Some instructions require the use of certain registers
- E.g., the call must pass parameters in rdi, rsi, rdx, rcx, r08, r09
- Virtual registers that must be assigned a particular register should be considered "pre-colored"
- Not a target for Simplify or Spill
- Terminate register allocator when no uncolored nodes remain

Graph coalescing

- May be desirable to place two variables in the same register
- E.g., if we have an assignment $x:=y$ and x and y are in the same register, we can elide the mov instruction

Graph coalescing

- May be desirable to place two variables in the same register
- E.g., if we have an assignment $x:=y$ and x and y are in the same register, we can elide the mov instruction
- Graph coalescing collapses two (non-adjacent) vertices into one vertex with the neighborhood of both
- Coalescing creates more register pressure
- Strategies to preserve K-colorability
- Briggs': coalesce only when the resulting node has $<K$ neighbors with degree $\geq K$
- George's: coalesce x and y only when each neighbor of x is either a neighbor of y or has degree $<K$.

More register allocation

Graph coloring is not the end of the story...

- Spill selection: if an interference graph cannot be simplified, which register should be spilled?
- Priority based on \# of edges, \# of uses of the variable, ...
- Live range splitting
- Might be desirable to allocate a single variable in different registers in different code sections
- SSA already does some of this implicitly!
- See Modern Compiler Implementation in ML Ch 11 for (some) more details

