
COS320: Compiling Techniques

Zak Kincaid

April 14, 2020

Logistics

• HW3 up on codepost
• HW4 due one week from today

Register allocation

Motivation

• Your LLVMlite compiler places each uid in its own stack slot
• Every binary operation is compiled to 2 loads, the operation, and a store
• Loads and stores are expensive
• Register allocation is the problem of determining a mapping from IR-level “virtual

registers” to machine registers

Live variables

• A variable x is live at a point n if there is some path starting from n that reads the value of x
before writing it.

• Intuition: a variable is live if its value might be needed later in some computation.

• If a variable x is not live, we can free/re-use the memory associated with x
• If two variables are not live at the same time, we can store them in the same memory

(ideally, a register)

Live variables

• Live variables is a backwards dataflow analysis problem
• Information flows from control flow successors to their predecessors

Forwards: Compute least IN,OUT s.t.
1 IN[s] = ⊤
2 For all n ∈ N, postL(n, IN[n]) ⊑ OUT[n]
3 For all p → n ∈ E, OUT[p] ⊑ IN[n]

Backwards: Compute least IN,OUT s.t.
1 OUT[n] = ⊤ for each return block n
2 For all n ∈ N, preL(n,OUT[n]) ⊑ IN[n]
3 For all n → s ∈ E, IN[s] ⊑ OUT[n]

• Backwards analyses work in essentially the same was as forwards analyses

• Live variables as a data flow analysis:
• Abstract domain: 2Var

• Existential ⇒ order is ⊆, join is ∪, ⊤ is Var, ⊥ is ∅
• pre(elt,L) = (L \ kill(elt)) ∪ gen(elt)
• kill(x := e) = {x}, kill(cbr x, l1, l2) = ∅
• gen(x := e) = {y : y in e}, gen(cbr x, l1, l2) = {x}

Live variables

• Live variables is a backwards dataflow analysis problem
• Information flows from control flow successors to their predecessors

Forwards: Compute least IN,OUT s.t.
1 IN[s] = ⊤
2 For all n ∈ N, postL(n, IN[n]) ⊑ OUT[n]
3 For all p → n ∈ E, OUT[p] ⊑ IN[n]

Backwards: Compute least IN,OUT s.t.
1 OUT[n] = ⊤ for each return block n
2 For all n ∈ N, preL(n,OUT[n]) ⊑ IN[n]
3 For all n → s ∈ E, IN[s] ⊑ OUT[n]

• Backwards analyses work in essentially the same was as forwards analyses
• Live variables as a data flow analysis:

• Abstract domain: 2Var

• Existential ⇒ order is ⊆, join is ∪, ⊤ is Var, ⊥ is ∅
• pre(elt,L) = (L \ kill(elt)) ∪ gen(elt)
• kill(x := e) = {x}, kill(cbr x, l1, l2) = ∅
• gen(x := e) = {y : y in e}, gen(cbr x, l1, l2) = {x}

Live variables

• Live variables is a backwards dataflow analysis problem
• Information flows from control flow successors to their predecessors

Forwards: Compute least IN,OUT s.t.
1 IN[s] = ⊤
2 For all n ∈ N, postL(n, IN[n]) ⊑ OUT[n]
3 For all p → n ∈ E, OUT[p] ⊑ IN[n]

Backwards: Compute least IN,OUT s.t.
1 OUT[n] = ⊤ for each return block n
2 For all n ∈ N, preL(n,OUT[n]) ⊑ IN[n]
3 For all n → s ∈ E, IN[s] ⊑ OUT[n]

• Backwards analyses work in essentially the same was as forwards analyses
• Live variables as a data flow analysis:

• Abstract domain: 2Var

• Existential ⇒ order is ⊆, join is ∪, ⊤ is Var, ⊥ is ∅
• pre(elt,L) = (L \ kill(elt)) ∪ gen(elt)

• kill(x := e) = {x}, kill(cbr x, l1, l2) = ∅
• gen(x := e) = {y : y in e}, gen(cbr x, l1, l2) = {x}

Live variables

• Live variables is a backwards dataflow analysis problem
• Information flows from control flow successors to their predecessors

Forwards: Compute least IN,OUT s.t.
1 IN[s] = ⊤
2 For all n ∈ N, postL(n, IN[n]) ⊑ OUT[n]
3 For all p → n ∈ E, OUT[p] ⊑ IN[n]

Backwards: Compute least IN,OUT s.t.
1 OUT[n] = ⊤ for each return block n
2 For all n ∈ N, preL(n,OUT[n]) ⊑ IN[n]
3 For all n → s ∈ E, IN[s] ⊑ OUT[n]

• Backwards analyses work in essentially the same was as forwards analyses
• Live variables as a data flow analysis:

• Abstract domain: 2Var

• Existential ⇒ order is ⊆, join is ∪, ⊤ is Var, ⊥ is ∅
• pre(elt,L) = (L \ kill(elt)) ∪ gen(elt)
• kill(x := e) = {x}, kill(cbr x, l1, l2) = ∅

• gen(x := e) = {y : y in e}, gen(cbr x, l1, l2) = {x}

Live variables

• Live variables is a backwards dataflow analysis problem
• Information flows from control flow successors to their predecessors

Forwards: Compute least IN,OUT s.t.
1 IN[s] = ⊤
2 For all n ∈ N, postL(n, IN[n]) ⊑ OUT[n]
3 For all p → n ∈ E, OUT[p] ⊑ IN[n]

Backwards: Compute least IN,OUT s.t.
1 OUT[n] = ⊤ for each return block n
2 For all n ∈ N, preL(n,OUT[n]) ⊑ IN[n]
3 For all n → s ∈ E, IN[s] ⊑ OUT[n]

• Backwards analyses work in essentially the same was as forwards analyses
• Live variables as a data flow analysis:

• Abstract domain: 2Var

• Existential ⇒ order is ⊆, join is ∪, ⊤ is Var, ⊥ is ∅
• pre(elt,L) = (L \ kill(elt)) ∪ gen(elt)
• kill(x := e) = {x}, kill(cbr x, l1, l2) = ∅
• gen(x := e) = {y : y in e}, gen(cbr x, l1, l2) = {x}

foo(i n t x, i n t y) {
a := x;
b := y;
s := 0;
whi le (a != b) {

s := s + a + b;
i f (a > b) {

a := a - b;
} e l s e {

b := b - a;
}

}
r e t u r n 2 * a + 3 * s;

}

a = x
b = y
s = 0

br loop

t1 = a - b

bnez t1, body, exit

t2 = s+a
s = t2+b
t3 = a - b

bgz t3, thn, els

a = a - b

br loop

b = b - a

br loop

t4 = 2 * a
t5 = 3 * s
t6 = t4 + t5

return t6

T

F

F

T

a, s

a, b, s

a, b, s

a, b, s

a, b, s

x, y

a = x
b = y
s = 0

br loop

t1 = a - b

bnez t1, body, exit

t2 = s+a
s = t2+b
t3 = a - b

bgz t3, thn, els

a = a - b

br loop

b = b - a

br loop

t4 = 2 * a
t5 = 3 * s
t6 = t4 + t5

return t6

T

F

F

T

a, s

a, b, s

a, b, s

a, b, s

a, b, s

x, y

a = x
b = y
s = 0

br loop

t1 = a - b

bnez t1, body, exit

t2 = s+a
s = t2+b
t3 = a - b

bgz t3, thn, els

a = a - b

br loop

b = b - a

br loop

t4 = 2 * a
t5 = 3 * s
t6 = t4 + t5

return t6

T

F

F

T

a, s

a, b, s

a, b, s

a, b, s

a, b, s

x, y

a = x
b = y
s = 0

br loop

t1 = a - b

bnez t1, body, exit

t2 = s+a
s = t2+b
t3 = a - b

bgz t3, thn, els

a = a - b

br loop

b = b - a

br loop

t4 = 2 * a
t5 = 3 * s
t6 = t4 + t5

return t6

T

F

F

T

a, s

a, b, s

a, b, s

a, b, s

a, b, s

x, y

a = x
b = y
s = 0

br loop

t1 = a - b

bnez t1, body, exit

t2 = s+a
s = t2+b
t3 = a - b

bgz t3, thn, els

a = a - b

br loop

b = b - a

br loop

t4 = 2 * a
t5 = 3 * s
t6 = t4 + t5

return t6

T

F

F

T

a, s

a, b, s

a, b, s

a, b, s

a, b, s

x, y

a = x
b = y
s = 0

br loop

t1 = a - b

bnez t1, body, exit

t2 = s+a
s = t2+b
t3 = a - b

bgz t3, thn, els

a = a - b

br loop

b = b - a

br loop

t4 = 2 * a
t5 = 3 * s
t6 = t4 + t5

return t6

T

F

F

T

a, s

a, b, s

a, b, s

a, b, s

a, b, s

x, y

Interference graph

• An interference graph for a CFG is an undirected graph (V, I) where
• Vertices V = program variables
• Edges I connect variables x and y iff there is some program point where x and y are

simultaneously live
• “Program point” includes intermediate points within basic blocks

• Vertices that are adjacent in the interference graph cannot be stored in the same memory
location

Interference graph construction
a = x
b = y
s = 0

br loop

t1 = a - b

bnez t1, body, exit

t2 = s+a
s = t2+b
t3 = a - b

bgz t3, thn, els

a = a - b

br loop

b = b - a

br loop

t4 = 2 * a
t5 = 3 * s
t6 = t4 + t5

return t6

T

F

F

T

a, s

a, b, s

a, b, s

a, b, s

a, b, s

x, y

x

y

a

b

s
t1

t2

t3

t4 t5

t6

Interference graph construction
a = x
b = y
s = 0

br loop

t1 = a - b

bnez t1, body, exit

t2 = s+a
s = t2+b
t3 = a - b

bgz t3, thn, els

a = a - b

br loop

b = b - a

br loop

t4 = 2 * a
t5 = 3 * s
t6 = t4 + t5

return t6

T

F

F

T

a, s

a, b, s

a, b, s

a, b, s

a, b, s

x, y

x

y

a

b

s
t1

t2

t3

t4 t5

t6

Interference graph construction
a = x
b = y
s = 0

br loop

t1 = a - b

bnez t1, body, exit

t2 = s+a
s = t2+b
t3 = a - b

bgz t3, thn, els

a = a - b

br loop

b = b - a

br loop

t4 = 2 * a
t5 = 3 * s
t6 = t4 + t5

return t6

T

F

F

T

a, s

a, b, s

a, b, s

a, b, s

a, b, s

x, y

x

y

a

b

s
t1

t2

t3

t4 t5

t6

Interference graph construction
a = x
b = y
s = 0

br loop

t1 = a - b

bnez t1, body, exit

t2 = s+a
s = t2+b
t3 = a - b

bgz t3, thn, els

a = a - b

br loop

b = b - a

br loop

t4 = 2 * a
t5 = 3 * s
t6 = t4 + t5

return t6

T

F

F

T

a, s

a, b, s

a, b, s

a, b, s

a, b, s

x, y

x

y

a

b

s
t1

t2

t3

t4 t5

t6

Interference graph coloring

• A K-coloring of the interference graph is a function c : V → {1, ...,K} such that if x and y
are adjacent in I, then c(x) ̸= c(y).

• Basic idea (due to Chaitin): if a processor has K registers, then a K-coloring of its
interference graph corresponds to a valid memory layout.

• Problem: Determining whether a graph is K-colorable is NP-complete
• But: we don’t need an optimal coloring – any coloring will do
• If we use more colors than we have registers, can spill: place the variable in memory rather

than a register
• May need to reserve some registers for intermediate computations (e.g., accessing memory)

Interference graph coloring

• A K-coloring of the interference graph is a function c : V → {1, ...,K} such that if x and y
are adjacent in I, then c(x) ̸= c(y).

• Basic idea (due to Chaitin): if a processor has K registers, then a K-coloring of its
interference graph corresponds to a valid memory layout.

• Problem: Determining whether a graph is K-colorable is NP-complete
• But: we don’t need an optimal coloring – any coloring will do
• If we use more colors than we have registers, can spill: place the variable in memory rather

than a register
• May need to reserve some registers for intermediate computations (e.g., accessing memory)

Greedy coloring

• Idea: assign colors to nodes in some order
• For each node, assign a color that isn’t already assigned to one of its neighbors

• No color available ⇒ spill
• If a node has < K neighbors, a color is always available

• Process:
• Simplify: choose a node with < K neighbors. Add it to a stack & remove it from the graph
• Spill: if all nodes have ≥ K neighbors, choose one to potentially spill. Add it to a stack &

remove it from the graph.
• Color: traverse the stack, assigining colors to the Simplified vertices, and either color or spill

Spilled vertices
• Not optimal: may use more colors than needed

• fast & works well in practice.

Greedy coloring

• Idea: assign colors to nodes in some order
• For each node, assign a color that isn’t already assigned to one of its neighbors

• No color available ⇒ spill
• If a node has < K neighbors, a color is always available

• Process:
• Simplify: choose a node with < K neighbors. Add it to a stack & remove it from the graph
• Spill: if all nodes have ≥ K neighbors, choose one to potentially spill. Add it to a stack &

remove it from the graph.
• Color: traverse the stack, assigining colors to the Simplified vertices, and either color or spill

Spilled vertices

• Not optimal: may use more colors than needed
• fast & works well in practice.

Greedy coloring

• Idea: assign colors to nodes in some order
• For each node, assign a color that isn’t already assigned to one of its neighbors

• No color available ⇒ spill
• If a node has < K neighbors, a color is always available

• Process:
• Simplify: choose a node with < K neighbors. Add it to a stack & remove it from the graph
• Spill: if all nodes have ≥ K neighbors, choose one to potentially spill. Add it to a stack &

remove it from the graph.
• Color: traverse the stack, assigining colors to the Simplified vertices, and either color or spill

Spilled vertices
• Not optimal: may use more colors than needed

• fast & works well in practice.

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack:

t6,x,y,t5,t4,t2,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6

,x,y,t5,t4,t2,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x

,y,t5,t4,t2,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y

,t5,t4,t2,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y,t5

,t4,t2,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4

,t2,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4,t2

,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!

Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4,t2

,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4,t2,a

,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4,t2,a,t1

,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4,t2,a,t1,t3

,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4,t2,a,t1,t3,b

,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4,t2,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4,t2,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4,t2,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4,t2,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4,t2,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!

Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4,t2,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4,t2,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4,t2,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4,t2,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4,t2,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4,t2,a,t1,t3,b,s

3-coloring the interference graph

x

y

a

b

s
t1

t2

t3

t4 t5

t6

≥ 3 neighbors ⇒ potential spill!Cannot color a ⇒ spill!

Stack: t6,x,y,t5,t4,t2,a,t1,t3,b,s

Suppose we have two reserved registers rax,rcx and three available registers r1,r2,r3

movq r1, -8(rbp)
movq r2, r2
movq $0, r1

br loop

movq -8(rbp), rax
subq r2, rax
movq rax, r3

bnez r3, body, exit

movq -8(rbp), rax
addq rax, r1
movq -8(rbp), rax
subq r2, rax
movq rax, r3

bgz r3, thn, els

movq -8(rbp), rax
subq r2, rax
movq rax, -8(rbp)

br loop

movq -8(rbp), rax
subq rax, r2

br loop

movq -8(rbp), rax
mulq $2, rax
movq rax, r3
movq r1, r2
mulq $3, r2
addq r2, r3
movq r3, r1

return r1

T

F

F

T

Accessing spilled registers

• Problem: we may need to use registers to access the stack slots that we use to store
spilled virtual registers

• Easy option: reserve some registers for memory operation (rax and rcx in last slide)

• Better option: genererate spill code, then re-run register allocator
• Spill code may use new virtual registers

• E.g., if x is spilled in xloc, y is spilled in yloc,
x = y⇝ t = load xloc; store t yloc

• When we re-run the register allocator, we must allocate registers to these virtual registers
• live range for new virtual register is very short
• use some book-keeping to prevent infinite loop

Accessing spilled registers

• Problem: we may need to use registers to access the stack slots that we use to store
spilled virtual registers

• Easy option: reserve some registers for memory operation (rax and rcx in last slide)
• Better option: genererate spill code, then re-run register allocator

• Spill code may use new virtual registers
• E.g., if x is spilled in xloc, y is spilled in yloc,

x = y⇝ t = load xloc; store t yloc

• When we re-run the register allocator, we must allocate registers to these virtual registers
• live range for new virtual register is very short
• use some book-keeping to prevent infinite loop

Pre-colored nodes

• Some instructions require the use of certain registers
• E.g., the call must pass parameters in rdi, rsi, rdx, rcx, r08, r09

• Virtual registers that must be assigned a particular register should be considered
“pre-colored”

• Not a target for Simplify or Spill
• Terminate register allocator when no uncolored nodes remain

Graph coalescing

• May be desirable to place two variables in the same register
• E.g., if we have an assignment x := y and x and y are in the same register, we can elide the

mov instruction

• Graph coalescing collapses two (non-adjacent) vertices into one vertex with the
neighborhood of both

• Coalescing creates more register pressure
• Strategies to preserve K-colorability

• Briggs’: coalesce only when the resulting node has < K neighbors with degree ≥ K
• George’s: coalesce x and y only when each neighbor of x is either a neighbor of y or has

degree < K.

Graph coalescing

• May be desirable to place two variables in the same register
• E.g., if we have an assignment x := y and x and y are in the same register, we can elide the

mov instruction

• Graph coalescing collapses two (non-adjacent) vertices into one vertex with the
neighborhood of both

• Coalescing creates more register pressure
• Strategies to preserve K-colorability

• Briggs’: coalesce only when the resulting node has < K neighbors with degree ≥ K
• George’s: coalesce x and y only when each neighbor of x is either a neighbor of y or has

degree < K.

More register allocation

Graph coloring is not the end of the story...
• Spill selection: if an interference graph cannot be simplified, which register should be

spilled?
• Priority based on # of edges, # of uses of the variable, ...

• Live range splitting
• Might be desirable to allocate a single variable in different registers in different code sections
• SSA already does some of this implicitly!

• See Modern Compiler Implementation in ML Ch 11 for (some) more details

