COS320: Compiling Techniques

Zak Kincaid

February 22, 2022

Bottom-up parsing

- Stack holds a word in $(N \cup \Sigma)^*$ such that it is possible to derive the part of the input string that has been consumed from its reverse.
- At any time, may read a letter from input string and push it on top of the stack
- At any time, may non-deterministically choose a rule $A ::= \gamma_1...\gamma_n$ and apply it in reverse: pop $\gamma_n...\gamma_1$ off the top of the stack, and push A.

 $(,\epsilon \rightarrow ($

Accept when stack just contains start non-terminal

$$~~::= + ~~|~~~~$$

$$::= (~~) | x~~$$

$$(, \epsilon \to (), \epsilon \to) + \epsilon \to + \\ x, \epsilon \to x$$

$$q_0 \xrightarrow{\epsilon, \epsilon \to \$} q_1 \xrightarrow{\epsilon, ~~\$ \to \epsilon} q_f~~$$

$$\epsilon, ~~+ \to~~$$

 $\begin{array}{l} \epsilon, <\!\!\mathsf{B}\!\!> \to <\!\!\mathsf{S}\!\!> \\ \epsilon,)<\!\!\mathsf{S}\!\!> (\to <\!\!\mathsf{B}\!\!> \\ \epsilon, \mathsf{x} \to <\!\!\mathsf{B}\!\!> \end{array}$

State	Stack	Input
q_0	ϵ	(x+x)+x
q_1	\$	(x+x)+x
q_1	(\$	x+x)+x
q_1	x(\$	+x)+x
q_1	(\$	+x)+x
q_1	+ (\$	x)+x
q_1	x+ (\$)+x
q_1	+(\$)+x
q_1	<s>+(\$</s>)+x
q_1	<s>(\$</s>)+x
q_1) <s>(\$</s>	+x
q_1	\$	+x
q_1	+ \$	x
q_1	x+ \$	ϵ
q_1	+\$	ϵ
q_1	<s>+\$</s>	ϵ
q_1	<s>\$</s>	ϵ
ac	6	-

LL vs LR

- LL parsers are top-down, LR parsers are bottom-up
- Easier to write LR grammars
 - Every LL(k) grammar is also LR(k), but not vice versa.
 - No need to eliminate left (or right) recursion
 - No need to left-factor.
- Harder to write LR parsers
 - But parser generators will do it for us!

Bottom-up PDA has two kinds of actions:

- Shift: move lookahead token to the top of the stack
- Reduce: remove $\gamma_n,...,\gamma_1$ from the top of the stack, replace with A (where $A::=\gamma_1...\gamma_n$ is a rule of the grammar)
- Just as for LL parsing, the trick is to resolve non-determinism.
 - When should the parser shift?
 - When should the parser reduce?

Determinizing the bottom-up PDA

- Intuition: reduce greedily
 - If any reduce action applies, then apply it
 - Actually, a bit more nuanced: only apply reduction action if it is "relevant" (can eventually lead to the input word being accepted)
 - If no reduce action applies, then shift
- Can use the states of the PDA to implement greedy strategy
 - State tracks top few symbols of the stack

Determinizing the bottom-up PDA

- Intuition: reduce greedily
 - If any reduce action applies, then apply it
 - Actually, a bit more nuanced: only apply reduction action if it is "relevant" (can eventually lead to the input word being accepted)
 - If no reduce action applies, then shift
- Can use the states of the PDA to implement greedy strategy
 - State tracks top few symbols of the stack
- Challenge: after applying reduce action, need to re-compute the state

Determinizing the bottom-up PDA

- Intuition: reduce greedily
 - If any reduce action applies, then apply it
 - Actually, a bit more nuanced: only apply reduction action if it is "relevant" (can eventually lead to the input word being accepted)
 - If no reduce action applies, then shift
- Can use the states of the PDA to implement greedy strategy
 - State tracks top few symbols of the stack
- Challenge: after applying reduce action, need to re-compute the state
- Solution: use the stack to store states
 - Shift reads current state off the top of the stack, then pushes the next state
 - Reduce $A ::= \gamma_1, ... \gamma_n$ pops last n states, then proceeds from (n-1)th state as if A had been read

Warm-up: LR(0) parsing

- LR(0) = LR with O-symbol lookahead
- An LR(0) item of a grammar $G = (N, \Sigma, R, S)$ is of the form $A ::= \gamma_1...\gamma_i \bullet \gamma_{i+1}...\gamma_n$, where $A ::= \gamma_1 \cdots \gamma_n$ is a rule of G
 - $\gamma_1...\gamma_i$ derives part of the word that has already been read
 - $\gamma_{i+1}...\gamma_n$ derives part of the word that remains to be read
 - ullet LR(0) items \sim states of an NFA that determines when a reduction applies to the top of the stack
- LR(O) items for the above grammar:
 - <S> ::= •(<L>), <S> ::= (<L>•), <S> ::= (<L>•), <S> ::= (<L>)•,
 - <S> ::= •x, <S> ::= x•,
 - <L> ::= •<S>, <L> ::= <S>•,
 - <L> ::= •<L>;<S>, <L> ::= <L>; •<S>, <L> ::= <L>; •<S , <L> ::= <L , <L> ::= <L , <L ::= <L

closure and goto

- For any set of items I, define closure(I) to be the least set of items such that
 - closure(I) contains I
 - If $\mathsf{closure}(I)$ contains an item of the form $A ::= \alpha \bullet B\beta$ where B is a non-terminal, then $\mathsf{closure}(I)$ contains $B ::= \bullet \gamma$ for all $B ::= \gamma \in R$
- closure(I) saturates I with all items that may be relevant to reducing via I
 - E.g., closure({<S> ::= (•<L>)}) = {<S> ::= (•<L>), <L> ::= •<S>, <L> ::= •<L>;<S>, <S> ::= •(<L>)<S> ::= •x}
 - Part of the not-quite greedy strategy: don't try to reduce using all rules all the time, track only
 a relevant subset

closure and goto

- For any set of items I, define closure(I) to be the least set of items such that
 - closure(I) contains I
 - If $\mathsf{closure}(I)$ contains an item of the form $A ::= \alpha \bullet B\beta$ where B is a non-terminal, then $\mathsf{closure}(I)$ contains $B ::= \bullet \gamma$ for all $B ::= \gamma \in R$
- closure(I) saturates I with all items that may be relevant to reducing via I
 - E.g., closure({<S> ::= (•<L>)}) =
 {<S> ::= (•<L>), <L> ::= •<S>, <L> ::= •<L>;<S>, <S> ::= •(<L>)<S> ::= •x}
 - Part of the not-quite greedy strategy: don't try to reduce using all rules all the time, track only a relevant subset
- For any item set I, and (terminal or non-terminal) symbol $\gamma \in N \cup \Sigma$ define $\mathsf{goto}(I,\gamma) = \mathsf{closure}(\{A ::= \alpha \gamma \bullet \beta \mid A ::= \alpha \bullet \gamma \beta \in I\})$
 - I.e., $goto(I, \gamma)$ is the result of "moving across γ "
 - $\bullet \ \ \mathsf{E.g., goto}(\mathsf{closure}(\{<\!\mathsf{S}\!\!\:>\: ::=\: (\bullet<\!\mathsf{L}\!\!\:>\:\!\!)\}, <\!\mathsf{L}\!\!\:>\:\!\!)) = \{<\!\mathsf{S}\!\!\:>\: ::=\: (<\!\mathsf{L}\!\!\:>\:\!\!\bullet\:\!\!), <\!\mathsf{L}\!\!\:>\: ::=\: <\!\mathsf{L}\!\!\:>\:\!\!\bullet\:\!;<\!\mathsf{S}\!\!\:>\:\!,\:\!\}$

Mechanical construction of LR(0) parsers

- **1** Add a new production S' ::= S\$ to the grammar.
 - S' is new start symbol
 - \$ marks end of the stack
- \odot Construct transitions as follows: for each closed item set I,
 - For each item of the form $A := \gamma_1 ... \gamma_n \bullet$ in *I*, add *reduce* transition

$$\epsilon, IJ_1...J_{n-1}K \rightarrow K'K$$
, where $K' = goto(K, A)$

• For each item of the form $A ::= \gamma \bullet a\beta$ in I with $a \in \Sigma$, add a *shift* transition

$$a, I \rightarrow I'I$$
 where $I' = goto(I, a)$

Resulting automaton is deterministic \iff grammar is LR(O)

Conflicts

- Recall: Automaton is deterministic ←⇒ grammar is LR(O)
- Two different types of transitions:
 - Reduce transitions, from items of the form $A := \gamma \bullet$
 - Shift transitions, from items of the form $A ::= \gamma \bullet a\beta$, where a is a terminal
 - (No transitions generated by items of the formu $A := \gamma \bullet A\beta$ where A is a non-terminal)

Conflicts

- Recall: Automaton is deterministic ←⇒ grammar is LR(O)
- Two different types of transitions:
 - Reduce transitions, from items of the form $A := \gamma \bullet$
 - Shift transitions, from items of the form $A := \gamma \bullet a\beta$, where a is a terminal
 - (No transitions generated by items of the formu $A := \gamma \bullet A\beta$ where A is a non-terminal)
- Reduce/reduce conflict: state has two or more items of the form $A ::= \gamma \bullet$ (choice of reduction is non-deterministic!)

Conflicts

- Recall: Automaton is deterministic ←⇒ grammar is LR(O)
- Two different types of transitions:
 - Reduce transitions, from items of the form $A := \gamma \bullet$
 - Shift transitions, from items of the form $A := \gamma \bullet a\beta$, where a is a terminal
 - (No transitions generated by items of the formu $A := \gamma \bullet A\beta$ where A is a non-terminal)
- Reduce/reduce conflict: state has two or more items of the form $A ::= \gamma \bullet$ (choice of reduction is non-deterministic!)
- Shift/reduce conflict: state has an item of the form $A ::= \gamma \bullet and$ one of the form $A ::= \gamma \bullet a\beta$ (choice of whether to shift or reduce is non-deterministic!)

Simple LR (SLR)

- Simple LR is a straight-forward extension of LR(O) with a lookahead token
- Idea: proceed exactly as LR(O), but eliminate (some) conflicts using lookahead token
 - For each item of the form $A ::= \gamma_1...\gamma_n \bullet$ in I, add reduce transition

$$\epsilon, IJ_1...J_{n-1}K \rightarrow K'K$$
, where $K' = \mathsf{goto}(K, A)$

with any lookahead token in follow(A)

Example: the following grammar is SLR, but not LR(O)

$$<$$
S> ::= $<$ T>b $<$ T> ::= a $<$ T> $\mid \epsilon$

Consider: $closure({<S'> ::= •<S>$})$ contains T ::= •.

SLR parser generators: Jison

LR(1) parser construction

- LR(1) parser generators: Menhir, Bison
- An LR(1) item of a grammar $G = (N, \Sigma, R, S)$ is of the form $(A ::= \gamma_1 ... \gamma_i \bullet \gamma_{i+1} ... \gamma_n, a)$, where $A ::= \gamma_1 ... \gamma_n$ is a rule of G and $a \in \Sigma$
 - $\gamma_1...\gamma_i$ derives part of the word that has already been read
 - $\gamma_{i+1}...\gamma_n$ derives part of the word that remains to be read
 - *a* is a lookahead symbol
- For any set of items I, define closure(I) to be the least set of items such that
 - closure(I) contains I
 - If closure(I) contains an item of the form $(A ::= \alpha \bullet B\beta, a)$ where B is a non-terminal, then closure(I) contains $(B ::= \bullet \gamma, b)$ for all $B ::= \gamma \in R$ and all $b \in \mathsf{first}(\beta a)$.
- Construct PDA as in LR(O)

LALR(1)

- LR(1) transition tables can be very large
- LALR(1) ("lookahead LR(1)") make transition table smaller by merging states that are identical except for lookahead
- Merging states can create reduce/reduce conflicts. Say that a grammar is LALR(1) if this
 merging doesn't create conflicts.
- LALR(1) parser generators: Bison, Yacc, ocamlyacc, Jison

Summary of parsing

- For any k, LL(k) grammars are LR(k)
- SLR grammars are LALR(1) are LR(1)
- In terms of language expressivity, there is an SLR (and therefore LALR(1) and LR(1) grammar for any context-free language that can be accepted by a deterministic pushdown automaton).
- Not every deterministic context free language is LL(k): $\{a^nb^n:n\in\mathbb{N}\}\cup\{a^nc^n:n\in\mathbb{N}\}$ is DCFL but not LL(k) for any k.¹

¹John C. Beatty, Two iteration theorems for the LL(k) Languages