COS320: Compiling Techniques

Zak Kincaid

February 22, 2022

Parsing III: LR parsing

Bottom-up parsing

- Stack holds a word in $(N \cup \Sigma)^{*}$ such that it is possible to derive the part of the input string that has been consumed from its reverse.
- At any time, may read a letter from input string and push it on top of the stack
- At any time, may non-deterministically choose a rule $A::=\gamma_{1} \ldots \gamma_{n}$ and apply it in reverse: pop $\gamma_{n} \ldots \gamma_{1}$ off the top of the stack, and push A.
- Accept when stack just contains start non-terminal

$$
\begin{aligned}
& \langle S\rangle::=\langle\mathrm{B}\rangle+\langle\mathrm{S}\rangle|<\mathrm{B}\rangle \\
& <\mathrm{B}\rangle::=(\langle\mathrm{S}\rangle) \mid \mathrm{x}
\end{aligned}
$$

	State	Stack	Input
<S> $\because=<\mathrm{B}\rangle+\langle\mathrm{S}\rangle\|<\mathrm{B}\rangle$	q_{0}	ϵ	$(x+x)+x$
	q_{1}	\$	$(x+x)+x$
$<\mathrm{B}\rangle::=(\langle\mathrm{S}\rangle) \mid \mathrm{x}$	q_{1}	(\$	x+x)+x
	q_{1}	x(\$	+x) +x
	q_{1}	 (\$	+x) +x
(, $\epsilon \rightarrow$ (q_{1}	$+$ (\$	x) $+x$
), $\epsilon \rightarrow$)	q_{1}	$x+$ (\$) $+x$
$+, \epsilon \rightarrow+$	q_{1}	+(\$)+x
$\mathrm{x}, \epsilon \rightarrow \mathrm{x}$	q_{1}	<S>+(\$) $+x$
	q_{1}	<S>(\$)+x
$\epsilon, \epsilon \rightarrow \$$	q_{1})<S>(\$	+x
start $\rightarrow q_{0} \longrightarrow q_{1} \longrightarrow q_{f}$	q_{1}	\$	+x
1	q_{1}	+\$	x
	q_{1}	$x+\$$	ϵ
$\epsilon,\langle\mathrm{S}\rangle+\langle\mathrm{B}\rangle \rightarrow$ <S>	q_{1}	+\$	ϵ
$\epsilon,\langle\mathrm{B}\rangle \rightarrow\langle\mathrm{S}\rangle$	q_{1}	<S>+\$	ϵ
$\epsilon,)<S>(\rightarrow$ < $>$	q_{1}	<S>\$	ϵ
$\epsilon, \mathrm{x} \rightarrow$ 	q_{f}	ϵ	ϵ

- LL parsers are top-down, LR parsers are bottom-up
- Easier to write LR grammars
- Every $\operatorname{LL}(\mathrm{k})$ grammar is also $\operatorname{LR}(\mathrm{k})$, but not vice versa.
- No need to eliminate left (or right) recursion
- No need to left-factor
- Harder to write LR parsers
- But parser generators will do it for us!

Bottom-up PDA has two kinds of actions:

- Shift: move lookahead token to the top of the stack
- Reduce: remove $\gamma_{n}, \ldots, \gamma_{1}$ from the top of the stack, replace with A (where $A::=\gamma_{1} \ldots \gamma_{n}$ is a rule of the grammar)
- Just as for LL parsing, the trick is to resolve non-determinism.
- When should the parser shift?
- When should the parser reduce?

Determinizing the bottom-up PDA

- Intuition: reduce greedily
- If any reduce action applies, then apply it
- Actually, a bit more nuanced: only apply reduction action if it is "relevant" (can eventually lead to the input word being accepted)
- If no reduce action applies, then shift
- Can use the states of the PDA to implement greedy strategy
- State tracks top few symbols of the stack

Determinizing the bottom-up PDA

- Intuition: reduce greedily
- If any reduce action applies, then apply it
- Actually, a bit more nuanced: only apply reduction action if it is "relevant" (can eventually lead to the input word being accepted)
- If no reduce action applies, then shift
- Can use the states of the PDA to implement greedy strategy
- State tracks top few symbols of the stack
- Challenge: after applying reduce action, need to re-compute the state

Determinizing the bottom-up PDA

- Intuition: reduce greedily
- If any reduce action applies, then apply it
- Actually, a bit more nuanced: only apply reduction action if it is "relevant" (can eventually lead to the input word being accepted)
- If no reduce action applies, then shift
- Can use the states of the PDA to implement greedy strategy
- State tracks top few symbols of the stack
- Challenge: after applying reduce action, need to re-compute the state
- Solution: use the stack to store states
- Shift reads current state off the top of the stack, then pushes the next state
- Reduce $A::=\gamma_{1}, \ldots \gamma_{n}$ pops last n states, then proceeds from $(n-1)$ th state as if A had been read

Warm-up: LR(0) parsing

$$
\begin{aligned}
& \langle S\rangle::=(\langle L\rangle) \mid x \\
& <L>::=\langle S\rangle \mid<L>;<S>
\end{aligned}
$$

- $L R(0)=$ LR with O-symbol lookahead
- An LR(O) item of a grammar $G=(N, \Sigma, R, S)$ is of the form $A::=\gamma_{1} \ldots \gamma_{i} \bullet \gamma_{i+1} \ldots \gamma_{n}$, where $A::=\gamma_{1} \cdots \gamma_{n}$ is a rule of G
- $\gamma_{1} \ldots \gamma_{i}$ derives part of the word that has already been read
- $\gamma_{i+1} \ldots \gamma_{n}$ derives part of the word that remains to be read
- LR(O) items \sim states of an NFA that determines when a reduction applies to the top of the stack
- LR(O) items for the above grammar:
- <S> : := • (<L>), <S> : := ($\bullet L>),\langle S\rangle::=(<L>\bullet),\langle S\rangle::=(<L\rangle) \bullet$,
- <S> ::= •x, <S> ::= x•,
- <L> : := •<S>, <L> : := <S>•,

closure and goto

- For any set of items I, define closure (I) to be the least set of items such that
- closure(I) contains I
- If closure (I) contains an item of the form $A::=\alpha \bullet B \beta$ where B is a non-terminal, then closure (I) contains $B::=\bullet \gamma$ for all $B::=\gamma \in R$
- closure (I) saturates I with all items that may be relevant to reducing via I
- E.g., closure $(\{<\mathrm{S}>::=(\bullet<\mathrm{L}>)\})=$ \{<S> ::= (•<L>),<L> ::= •<S>,<L> ::= •<L>;<S>,<S> ::= •(<L>)<S> ::= •x\}
- Part of the not-quite greedy strategy: don't try to reduce using all rules all the time, track only a relevant subset

closure and goto

- For any set of items I, define closure (I) to be the least set of items such that
- closure(I) contains I
- If closure (I) contains an item of the form $A::=\alpha \bullet B \beta$ where B is a non-terminal, then closure (I) contains $B::=\bullet \gamma$ for all $B::=\gamma \in R$
- closure (I) saturates I with all items that may be relevant to reducing via I
- E.g., closure $(\{<\mathrm{S}>::=(\bullet<\mathrm{L}>)\})=$

- Part of the not-quite greedy strategy: don't try to reduce using all rules all the time, track only a relevant subset
- For any item set I, and (terminal or non-terminal) symbol $\gamma \in N \cup \Sigma$ define goto $(I, \gamma)=\operatorname{closure}(\{A::=\alpha \gamma \bullet \beta \mid A::=\alpha \bullet \gamma \beta \in I\})$
- I.e., goto (I, γ) is the result of "moving • across γ "

Mechanical construction of $\operatorname{LR}(0)$ parsers

(1) Add a new production $S^{\prime}::=S \$$ to the grammar.

- S^{\prime} is new start symbol
- \$ marks end of the stack
(2) Construct transitions as follows: for each closed item set I,
- For each item of the form $A::=\gamma_{1} \ldots \gamma_{n} \bullet$ in I, add reduce transition

$$
\epsilon, I J_{1} \ldots J_{n-1} K \rightarrow K^{\prime} K, \text { where } K^{\prime}=\operatorname{goto}(K, A)
$$

- For each item of the form $A::=\gamma \bullet a \beta$ in I with $a \in \Sigma$, add a shift transition

$$
a, I \rightarrow I^{\prime} I \text { where } I^{\prime}=\operatorname{goto}(I, a)
$$

Resulting automaton is deterministic \Longleftrightarrow grammar is LR(O)

Conflicts

- Recall: Automaton is deterministic \Longleftrightarrow grammar is LR(O)
- Two different types of transitions:
- Reduce transitions, from items of the form $A::=\gamma \bullet$
- Shift transitions, from items of the form $A::=\gamma \bullet a \beta$, where a is a terminal
- (No transitions generated by items of the formu $A::=\gamma \bullet A \beta$ where A is a non-terminal)

Conflicts

- Recall: Automaton is deterministic \Longleftrightarrow grammar is LR(O)
- Two different types of transitions:
- Reduce transitions, from items of the form $A::=\gamma$ •
- Shift transitions, from items of the form $A::=\gamma \bullet a \beta$, where a is a terminal
- (No transitions generated by items of the formu $A::=\gamma \bullet A \beta$ where A is a non-terminal)
- Reduce/reduce conflict: state has two or more items of the form $A::=\gamma \bullet$ (choice of reduction is non-deterministic!)

Conflicts

- Recall: Automaton is deterministic \Longleftrightarrow grammar is LR(O)
- Two different types of transitions:
- Reduce transitions, from items of the form $A::=\gamma \bullet$
- Shift transitions, from items of the form $A::=\gamma \bullet a \beta$, where a is a terminal
- (No transitions generated by items of the formu $A::=\gamma \bullet A \beta$ where A is a non-terminal)
- Reduce/reduce conflict: state has two or more items of the form $A::=\gamma \bullet$ (choice of reduction is non-deterministic!)
- Shift/reduce conflict: state has an item of the form $A::=\gamma \bullet$ and one of the form $A::=\gamma \bullet a \beta$ (choice of whether to shift or reduce is non-deterministic!)

Simple LR (SLR)

- Simple LR is a straight-forward extension of $\operatorname{LR}(\mathrm{O})$ with a lookahead token
- Idea: proceed exactly as LR(O), but eliminate (some) conflicts using lookahead token
- For each item of the form $A::=\gamma_{1} \ldots \gamma_{n} \bullet$ in I, add reduce transition

$$
\epsilon, I J_{1} \ldots J_{n-1} K \rightarrow K^{\prime} K \text {, where } K^{\prime}=\operatorname{goto}(K, A)
$$

with any lookahead token in follow(A)

- Example: the following grammar is SLR, but not LR(O)

$$
\begin{array}{r}
<\mathrm{S}\rangle::=<\mathrm{T}\rangle \mathrm{b} \\
<\mathrm{T}\rangle::=\mathrm{a}<\mathrm{T}\rangle \mid \epsilon
\end{array}
$$

Consider: closure(\{<S'> : := •<S>\$\}) contains T : := •.

- SLR parser generators: Jison

LR(1) parser construction

- LR(1) parser generators: Menhir, Bison
- An LR(1) item of a grammar $G=(N, \Sigma, R, S)$ is of the form $\left(A::=\gamma_{1} \ldots \gamma_{i} \bullet \gamma_{i+1} \ldots \gamma_{n}, a\right)$, where $A::=\gamma_{1} \cdots \gamma_{n}$ is a rule of G and $a \in \Sigma$
- $\gamma_{1} \ldots \gamma_{i}$ derives part of the word that has already been read
- $\gamma_{i+1} \ldots \gamma_{n}$ derives part of the word that remains to be read
- a is a lookahead symbol
- For any set of items I, define closure (I) to be the least set of items such that
- closure (I) contains I
- If closure (I) contains an item of the form $(A::=\alpha \bullet B \beta, a)$ where B is a non-terminal, then closure (I) contains ($B::=\bullet \gamma, b$) for all $B::=\gamma \in R$ and all $b \in$ first (βa).
- Construct PDA as in LR(0)

LALR(1)

- $\operatorname{LR}(1)$ transition tables can be very large
- LALR(1) ("lookahead LR(1)") make transition table smaller by merging states that are identical except for lookahead
- Merging states can create reduce/reduce conflicts. Say that a grammar is LALR(1) if this merging doesn't create conflicts.
- LALR(1) parser generators: Bison, Yacc, ocamlyacc, Jison

Summary of parsing

- For any $k, L L(k)$ grammars are $L R(k)$
- $S L R$ grammars are $L A L R(1)$ are $L R(1)$
- In terms of language expressivity, there is an SLR (and therefore LALR(1) and LR(1) grammar for any context-free language that can be accepted by a deterministic pushdown automaton).
- Not every deterministic context free language is $\operatorname{LL}(\mathrm{k}):\left\{a^{n} b^{n}: n \in \mathbb{N}\right\} \cup\left\{a^{n} c^{n}: n \in \mathbb{N}\right\}$ is DCFL but not LL(k) for any $k .{ }^{1}$

[^0]
[^0]: ${ }^{1}$ John C. Beatty, Two iteration theorems for the LL(k) Languages

