COS320: Compiling Techniques

Zak Kincaid

February 22, 2022
Parsing III: LR parsing
Bottom-up parsing

- Stack holds a word in \((N \cup \Sigma)^*\) such that it is possible to derive the part of the input string that has been consumed from its reverse.
- At any time, may read a letter from input string and push it on top of the stack.
- At any time, may non-deterministically choose a rule \(A ::= \gamma_1...\gamma_n\) and apply it in reverse: pop \(\gamma_n...\gamma_1\) off the top of the stack, and push \(A\).
- Accept when stack just contains start non-terminal.

\[
\begin{align*}
\langle S \rangle &::= \langle B \rangle + \langle S \rangle \mid \langle B \rangle \\
\langle B \rangle &::= (\langle S \rangle) \mid x
\end{align*}
\]
\[
\begin{align*}
<S> &::= + <S> \ | \ \\
 &::= (<S>) \ | \ x
\end{align*}
\]

\[\begin{array}{|c|c|c|}
\hline
\text{State} & \text{Stack} & \text{Input} \\
\hline
q_0 & \epsilon & (x+x) + x \\
q_1 & $ & (x+x) + x \\
q_1 & ($) & x + x + x \\
q_1 & x($) & +x + x \\
q_1 & ($) & +x + x \\
q_1 & +($) & x + x \\
q_1 & x + ($) & +x \\
q_1 & + ($) &) + x \\
q_1 & <S> + ($) &) + x \\
q_1 & <S>($) &) + x \\
q_1 &) <S>($) & + x \\
q_1 & $ & + x \\
q_1 & + $ & + x \\
q_1 & x + $ & + x \\
q_1 & + $ & + x \\
q_1 & <S> + $ & + x \\
q_1 & <S>$ & + x \\
q_f & \epsilon & \epsilon \\
\hline
\end{array}\]
LL vs LR

• LL parsers are top-down, LR parsers are bottom-up
• Easier to write LR grammars
 • Every LL(k) grammar is also LR(k), but not vice versa.
 • No need to eliminate left (or right) recursion
 • No need to left-factor
• Harder to write LR parsers
 • But parser generators will do it for us!
Bottom-up PDA has two kinds of actions:

- **Shift**: move lookahead token to the top of the stack
- **Reduce**: remove $\gamma_n, \ldots, \gamma_1$ from the top of the stack, replace with A (where $A ::= \gamma_1 \ldots \gamma_n$ is a rule of the grammar)
- Just as for LL parsing, the trick is to resolve non-determinism.
 - When should the parser shift?
 - When should the parser reduce?

\[
\begin{align*}
\langle S \rangle &::= \langle B \rangle + \langle S \rangle | \langle B \rangle \\
\langle B \rangle &::= (\langle S \rangle) | x
\end{align*}
\]
Determinizing the bottom-up PDA

- **Intuition**: reduce greedily
 - If any reduce action applies, then apply it
 - Actually, a bit more nuanced: only apply reduction action if it is “relevant” (can eventually lead to the input word being accepted)
 - If no reduce action applies, then shift
- Can use the states of the PDA to implement greedy strategy
 - State tracks top few symbols of the stack
Determinizing the bottom-up PDA

- **Intuition**: reduce greedily
 - If any reduce action applies, then apply it
 - Actually, a bit more nuanced: only apply reduction action if it is “relevant” (can eventually lead to the input word being accepted)
 - If no reduce action applies, then shift
- Can use the states of the PDA to implement greedy strategy
 - State tracks top few symbols of the stack
- **Challenge**: after applying reduce action, need to re-compute the state
Determinizing the bottom-up PDA

- **Intuition**: reduce greedily
 - If any reduce action applies, then apply it
 - Actually, a bit more nuanced: only apply reduction action if it is “relevant” (can eventually lead to the input word being accepted)
 - If no reduce action applies, then shift
- Can use the states of the PDA to implement greedy strategy
 - State tracks top few symbols of the stack
- **Challenge**: after applying reduce action, need to re-compute the state
- **Solution**: use the stack to store *states*
 - Shift reads current state off the top of the stack, then pushes the next state
 - Reduce $A ::= \gamma_1, \ldots, \gamma_n$ pops last n states, then proceeds from $(n-1)$th state as if A had been read
Warm-up: LR(0) parsing

\[
\begin{align*}
\langle S \rangle &::= (\langle L \rangle) \mid x \\
\langle L \rangle &::= \langle S \rangle \mid \langle L \rangle ; \langle S \rangle
\end{align*}
\]

- \(LR(0)\) = LR with 0-symbol lookahead
- An **LR(0) item** of a grammar \(G = (N, \Sigma, R, S)\) is of the form \(A ::= \gamma_1 \ldots \gamma_i \bullet \gamma_{i+1} \ldots \gamma_n\), where \(A ::= \gamma_1 \ldots \gamma_n\) is a rule of \(G\):
 - \(\gamma_1 \ldots \gamma_i\) derives part of the word that has already been read
 - \(\gamma_{i+1} \ldots \gamma_n\) derives part of the word that remains to be read
- LR(0) items \(\sim\) states of an NFA that determines when a reduction applies to the top of the stack
- LR(0) items for the above grammar:
 - \(\langle S \rangle ::= \bullet (\langle L \rangle), \langle S \rangle ::= (\bullet \langle L \rangle), \langle S \rangle ::= (\langle L \rangle \bullet), \langle S \rangle ::= (\langle L \rangle) \bullet,\)
 - \(\langle S \rangle ::= \bullet x, \langle S \rangle ::= x \bullet,\)
 - \(\langle L \rangle ::= \bullet \langle S \rangle, \langle L \rangle ::= \langle S \rangle \bullet,\)
 - \(\langle L \rangle ::= \bullet \langle L \rangle ; \langle S \rangle, \langle L \rangle ::= \langle L \rangle \bullet; \langle S \rangle, \langle L \rangle ::= \langle L \rangle ; \bullet \langle S \rangle, \langle L \rangle ::= \langle L \rangle ; \langle S \rangle \bullet,\)
closure and goto

• For any set of items I, define $\text{closure}(I)$ to be the least set of items such that
 • $\text{closure}(I)$ contains I
 • If $\text{closure}(I)$ contains an item of the form $A ::= \alpha \cdot B\beta$ where B is a non-terminal, then $\text{closure}(I)$ contains $B ::= \cdot\gamma$ for all $B ::= \gamma \in R$

• $\text{closure}(I)$ saturates I with all items that may be relevant to reducing via I
 • E.g., $\text{closure}([<S> ::= (\cdot<L>), <L> ::= \cdot<S>, <L> ::= \cdot<L>;<S>, <S> ::= \cdot(<L>)<S> ::= \cdot x]) =$

• Part of the not-quite greedy strategy: don’t try to reduce using all rules all the time, track only a relevant subset
For any set of items I, define $\text{closure}(I)$ to be the least set of items such that

- $\text{closure}(I)$ contains I
- If $\text{closure}(I)$ contains an item of the form $A ::= \alpha \bullet B\beta$ where B is a non-terminal, then $\text{closure}(I)$ contains $B ::= \bullet \gamma$ for all $B ::= \gamma \in R$

$\text{closure}(I)$ saturates I with all items that may be relevant to reducing via I

- E.g., $\text{closure}(\{<S> ::= (\bullet<L>)\}) = \{<S> ::= (\bullet<L>), <L> ::= \bullet<S>, <L> ::= \bullet<L>; <S>, <S> ::= \bullet(<L>)<S> ::= \bullet x\}$
- Part of the not-quite greedy strategy: don’t try to reduce using all rules all the time, track only a relevant subset

For any item set I, and (terminal or non-terminal) symbol $\gamma \in N \cup \Sigma$ define $\text{goto}(I, \gamma) = \text{closure}(\{A ::= \alpha \gamma \bullet \beta \mid A ::= \alpha \bullet \gamma \beta \in I\})$

- I.e., $\text{goto}(I, \gamma)$ is the result of “moving \bullet across γ”
- E.g., $\text{goto}(\text{closure}(\{<S> ::= (\bullet<L>)}, <L>)) = \{<S> ::= (<L>\bullet), <L> ::= <L>\bullet; <S>, \}$
Mechanical construction of LR(0) parsers

1. Add a new production $S' ::= S \$$ to the grammar.
 - S' is new start symbol
 - $\$$ marks end of the stack

2. Construct transitions as follows: for each closed item set I,
 - For each item of the form $A ::= \gamma_1 \ldots \gamma_n \bullet$ in I, add reduce transition

 $\epsilon, IJ_1 \ldots J_{n-1} K \rightarrow K' K$, where $K' = \text{goto}(K, A)$

 - For each item of the form $A ::= \gamma \bullet a\beta$ in I with $a \in \Sigma$, add a shift transition

 $a, I \rightarrow I' I$ where $I' = \text{goto}(I, a)$

Resulting automaton is deterministic \iff grammar is LR(0)
Conflicts

• Recall: Automaton is deterministic \iff grammar is LR(0)
• Two different types of transitions:
 • *Reduce* transitions, from items of the form $A ::= \gamma \bullet$
 • *Shift* transitions, from items of the form $A ::= \gamma \bullet a\beta$, where a is a terminal
 • (No transitions generated by items of the form $A ::= \gamma \bullet A\beta$ where A is a non-terminal)
Conflicts

• Recall: Automaton is deterministic \iff grammar is $LR(0)$

• Two different types of transitions:
 • *Reduce* transitions, from items of the form $A ::= \gamma \bullet$
 • *Shift* transitions, from items of the form $A ::= \gamma \bullet a\beta$, where a is a terminal
 • (No transitions generated by items of the form $A ::= \gamma \bullet A\beta$ where A is a non-terminal)

• **Reduce/reduce conflict**: state has two or more items of the form $A ::= \gamma \bullet$ (choice of reduction is non-deterministic!)
Conflicts

- Recall: Automaton is deterministic \iff grammar is LR(0)
- Two different types of transitions:
 - *Reduce* transitions, from items of the form $A ::= \gamma \bullet$
 - *Shift* transitions, from items of the form $A ::= \gamma \bullet a\beta$, where a is a terminal
 - (No transitions generated by items of the form $A ::= \gamma \bullet A\beta$ where A is a non-terminal)
- **Reduce/reduce conflict**: state has two or more items of the form $A ::= \gamma \bullet$ (choice of reduction is non-deterministic!)
- **Shift/reduce conflict**: state has an item of the form $A ::= \gamma \bullet$ *and* one of the form $A ::= \gamma \bullet a\beta$ (choice of whether to shift or reduce is non-deterministic!)
Simple LR (SLR)

- Simple LR is a straight-forward extension of LR(0) with a lookahead token
- Idea: proceed exactly as LR(0), but eliminate (some) conflicts using lookahead token
 - For each item of the form $A ::= \gamma_1 \ldots \gamma_n \cdot$ in I, add reduce transition
 \[\epsilon, IJ_1 \ldots J_{n-1} K \rightarrow K' K, \text{ where } K' = \text{goto}(K, A) \]
 with any lookahead token in follow(A)
- Example: the following grammar is SLR, but not LR(0)

 $$
 \begin{align*}
 <S> &::= <T>b \\
 <T> &::= a<T> \mid \epsilon
 \end{align*}
 $$

 Consider: $\text{closure} \{ <S'> ::= \bullet <S>$\} contains $T ::= \bullet$.
- SLR parser generators: Jison
LR(1) parser construction

- LR(1) parser generators: Menhir, Bison
- An LR(1) item of a grammar $G = (N, \Sigma, R, S)$ is of the form $(A ::= \gamma_1 \cdots \gamma_i \bullet \gamma_{i+1} \cdots \gamma_n, a)$, where $A ::= \gamma_1 \cdots \gamma_n$ is a rule of G and $a \in \Sigma$
 - $\gamma_1 \cdots \gamma_i$ derives part of the word that has already been read
 - $\gamma_{i+1} \cdots \gamma_n$ derives part of the word that remains to be read
 - a is a lookahead symbol
- For any set of items I, define $\text{closure}(I)$ to be the least set of items such that
 - $\text{closure}(I)$ contains I
 - If $\text{closure}(I)$ contains an item of the form $(A ::= \alpha \bullet B\beta, a)$ where B is a non-terminal, then $\text{closure}(I)$ contains $(B ::= \bullet \gamma, b)$ for all $B ::= \gamma \in R$ and all $b \in \text{first}(\beta a)$.
- Construct PDA as in LR(0)
LALR(1)

- LR(1) transition tables can be very large
- LALR(1) ("lookahead LR(1)") make transition table smaller by merging states that are identical except for lookahead
- Merging states can create reduce/reduce conflicts. Say that a grammar is LALR(1) if this merging *doesn’t* create conflicts.
- LALR(1) parser generators: Bison, Yacc, ocamlyacc, Jison
Summary of parsing

- For any k, $LL(k)$ grammars are $LR(k)$
- SLR grammars are $LALR(1)$ are $LR(1)$
- In terms of language expressivity, there is an SLR (and therefore LALR(1) and LR(1) grammar for any context-free language that can be accepted by a deterministic pushdown automaton).
- Not every deterministic context-free language is $LL(k)$: $\{a^n b^n : n \in \mathbb{N}\} \cup \{a^n c^n : n \in \mathbb{N}\}$ is DCFL but not $LL(k)$ for any k.\(^1\)

\(^1\)John C. Beatty, *Two iteration theorems for the LL(k) Languages*