COS320: Compiling Techniques

Zak Kincaid

February 23, 2022

- Reminder: HW2 due today
- HW3 on course webpage. Due March 21. Start early!
- You will implement a compiler for a simple imperative programming language (Oat), targeting LLVMlite.
- You may work individually or in pairs
- Midterm next Thursday
- Covers material in lectures up to February 23rd (this Wednesday)
- Interpreters, program transformation, X86, IRs, lexing, parsing
- How to prepare:
- Sample exams on Canvas later today
- Start on HW3
- Review slides
- Review example code from lectures (try re-implementing!)
- Review next Monday: come prepared with questions

Parsing II: LL parsing

Recall: Context-free grammars

- A context-free grammar $G=(N, \Sigma, R, S)$ consists of:
- N : a finite set of non-terminal symbols
- Σ : a finite alphabet (or set of terminal symbols)
- $R \subseteq N \times(N \cup \Sigma)^{*}$ a finite set of rules or productions
- $S \in N$: the starting non-terminal.

Recall: Context-free grammars

- A context-free grammar $G=(N, \Sigma, R, S)$ consists of:
- N : a finite set of non-terminal symbols
- Σ : a finite alphabet (or set of terminal symbols)
- $R \subseteq N \times(N \cup \Sigma)^{*}$ a finite set of rules or productions
- $S \in N$: the starting non-terminal.
- A word w is accepted by G if is derivable in zero or more steps from the starting non-terminal
- Write $\gamma \Rightarrow \gamma^{\prime}$ if γ^{\prime} is obtained from γ by replacing a non-terminal symbol in γ with the right-hand-side of one of its rules
- Write $\gamma \Rightarrow^{*} \gamma^{\prime}$ if γ^{\prime} can be obtained from γ using \mathbf{O} or more derivation steps
- A word $w \in \Sigma^{*}$ is accepted by G if $S \Rightarrow^{*} w$

Parsing

- Context-free grammars are generative: easy to find strings that belongs to $\mathcal{L}(G)$, not so easy determine whether a given string belongs to $\mathcal{L}(G)$
- Pushdown automata (PDA) are a kind of automata that recognize context-free languages
- Pushdown automaton recognizing <S> :: \llS><S> | (<S>) | ϵ :
- Stack alphabet: $\$$ marks bottom of the stack, L marks unbalanced left paren

Recall: pushdown automata

- A push-down automaton $A=(Q, \Sigma, \Gamma, \Delta, s, F)$ consists of
- Q : a finite set of states
- Σ : an (input) alphabet
- Γ : a (stack) alphabet
- $\Delta \subseteq \underbrace{Q}_{\text {source }} \times \underbrace{(\Sigma \cup\{\epsilon\})}_{\text {read input }} \times \underbrace{\Gamma^{*}}_{\text {read stack }} \times \underbrace{Q}_{\text {dest }} \times \underbrace{\Gamma^{*}}_{\text {write stack }}$, the transition relation
- $s \in Q$: start state
- $F \subseteq Q$: set of final (accepting) states

Recall: pushdown automata

- A push-down automaton $A=(Q, \Sigma, \Gamma, \Delta, s, F)$ consists of
- Q : a finite set of states
- Σ : an (input) alphabet
- Γ : a (stack) alphabet
- $\Delta \subseteq \underbrace{Q}_{\text {source }} \times \underbrace{(\Sigma \cup\{\epsilon\})}_{\text {read input }} \times \underbrace{\Gamma^{*}}_{\text {read stack }} \times \underbrace{Q}_{\text {dest }} \times \underbrace{\Gamma^{*}}_{\text {write stack }}$, the transition relation
- $s \in Q$: start state
- $F \subseteq Q$: set of final (accepting) states
- A word w is accepted by A if there is a w-labeled accepting path in A
- A configuration of A is a pair (q, v) consisting of a state $q \in Q$ and a stack $v \in \Gamma^{*}$
- Write $(q, v) \xrightarrow{w}\left(q^{\prime}, v^{\prime}\right)$ if there is some $t \in \Gamma^{*}$ such that $v=a t, v^{\prime}=b t$, and $\left(q, w, a, q^{\prime}, b\right) \in \Delta$
- Write $(q, v) \xrightarrow{w}\left(q^{\prime}, v^{\prime}\right)$ if there is some w_{1}, \ldots, w_{n} and $\left(q_{1}, v_{1}\right), \ldots,\left(q_{n-1}, v_{n-1}\right)$ such that $w=w_{1} \cdots w_{n}$ and

$$
(q, v) \xrightarrow{w_{1}}\left(q_{1}, v_{1}\right) \xrightarrow{w_{2}}\left(q_{2}, v_{2}\right) \xrightarrow{w_{3}} \ldots \xrightarrow{w_{n-1}}\left(q_{n-1}, v_{n-1}\right) \xrightarrow{w_{n}}\left(q^{\prime}, v^{\prime}\right)
$$

- A word w is accepted iff $(s, \epsilon) \xrightarrow{w}(q, a)$ for some $q \in F$.

Context free languages

- Claim: a language is recognized by a context-free grammar if and only if it is recognized by a pushdown automaton
- Say that a language is context free if it is recognized by a context-free grammar (equiv. pushdown automaton).
- Consequence: can "compile" context-free grammars to pushdown automata in order to implement parsers

Context free languages

- Claim: a language is recognized by a context-free grammar if and only if it is recognized by a pushdown automaton
- Say that a language is context free if it is recognized by a context-free grammar (equiv. pushdown automaton).
- Consequence: can "compile" context-free grammars to pushdown automata in order to implement parsers
- Two strategies, which correspond to different ways to implement parsers:
- Top-down (LL parsing)
- Bottom-up (LR parsing)

Top-down parsing

- Stack represents intermediate state of a derivation, minus the consumed part of the input string.
- Start with S on the stack
- Any time top of the stack is a non-terminal A, non-deterministically choose a rule $A::=\gamma \in R$. Pop A off the stack, and push γ
- If the top of the stack is a terminal a, consume a from the input string and pop a off the stack
- Accept when stack is empty

$$
\begin{aligned}
& \langle S\rangle::=\langle\mathrm{B}\rangle+\langle\mathrm{S}\rangle \mid\langle\mathrm{B}\rangle \\
& \langle\mathrm{B}\rangle::=(\langle\mathrm{S}\rangle) \mid \mathrm{x}
\end{aligned}
$$

$$
\begin{aligned}
& <\mathrm{S}>::=<\mathrm{B}\rangle+<\mathrm{S}>|<\mathrm{B}\rangle \\
& ::=(\langle S\rangle) \mid x \\
& \text { (, }(\rightarrow \epsilon \\
& \text {),) } \rightarrow \epsilon \\
& +,+\rightarrow \epsilon \\
& \mathrm{x}, \mathrm{x} \rightarrow \epsilon
\end{aligned}
$$

State	Stack	Input
q_{0}	ϵ	$(x+x)+x$
q_{1}	<S>\$	$(x+x)+x$
q_{1}	+<S>\$	$(x+x)+x$
q_{1}	(<S>) $+<\mathrm{S}>\$$	$(x+x)+x$
q_{1}	<S>)+<S>\$	x+x)+x
q_{1}	+<S>)+<S>\$	x+x) +x
q_{1}	$\mathrm{x}+\langle$ S $>$) $+\langle\mathrm{S}>\$$	$x+x)+x$
q_{1}	+<S>)+<S>\$	$+x)+x$
q_{1}	<S>)+<S>\$	$x)+x$
q_{1})+<S>\$	$x)+x$
q_{1}	x) $+<$ S $>\$$	$x)+x$
q_{1})+<S>\$)+x
q_{1}	+<S>\$	+x
q_{1}	<S>\$	x
q_{1}	\$	x
q_{1}	$\times \$$	x
q_{1}	\$	ϵ
q_{f}	ϵ	ϵ

Bottom-up parsing

- Stack holds a word in $(N \cup \Sigma)^{*}$ such that it is possible to derive the part of the input string that has been consumed from its reverse.
- At any time, may read a letter from input string and push it on top of the stack
- At any time, may non-deterministically choose a rule $A::=\gamma_{1} \ldots \gamma_{n}$ and apply it in reverse: pop $\gamma_{n} \ldots \gamma_{1}$ off the top of the stack, and push A.
- Accept when stack just contains start non-terminal

$$
\begin{aligned}
& \langle S\rangle::=\langle\mathrm{B}\rangle+\langle\mathrm{S}\rangle|<\mathrm{B}\rangle \\
& <\mathrm{B}\rangle::=(\langle\mathrm{S}\rangle) \mid \mathrm{x}
\end{aligned}
$$

$$
\begin{aligned}
& <\mathrm{S}\rangle::=<\mathrm{B}\rangle+\langle\mathrm{S}\rangle|<\mathrm{B}\rangle \\
& <\mathrm{B}\rangle::=(\langle\mathrm{S}\rangle) \mid \mathrm{x} \\
& (, \epsilon \rightarrow \text { (} \\
& \text {), } \epsilon \rightarrow \text {) } \\
& +, \epsilon \rightarrow+ \\
& \mathrm{x}, \epsilon \rightarrow \mathrm{x} \\
& \begin{array}{c}
\epsilon, \epsilon \rightarrow \$ \\
\epsilon,<\mathrm{S}>+<\mathrm{B}>\rightarrow<\mathrm{S}> \\
\epsilon,<\mathrm{B}>\rightarrow<\mathrm{S}> \\
\epsilon,)<\mathrm{S}>(\rightarrow<\mathrm{B}> \\
\epsilon, \mathrm{x} \rightarrow<\mathrm{B}>
\end{array}
\end{aligned}
$$

State	Stack	Input
q_{0}	ϵ	($\mathrm{x}+\mathrm{x}$) +x
q_{1}	\$	$(x+x)+x$
q_{1}	(\$	$x+x)+x$
q_{1}	\times (\$	$+x)+x$
q_{1}	 (\$	$+x)+x$
q_{1}	+ (\$	$x)+x$
q_{1}	$x+$ (\$)+x
q_{1}	$+$ (\$)+x
q_{1}	$\langle\mathrm{S}\rangle+\langle\mathrm{B}>$ (\$)+x
q_{1}	<S> (\$)+x
q_{1})<S>(\$	+x
q_{1}	\$	+x
q_{1}	$+\$$	x
q_{1}	$x+\$$	ϵ
q_{1}	$+\$$	ϵ
q_{1}	<S>+\$	ϵ
q_{1}	<S>\$	ϵ
q_{f}	ϵ	ϵ

Parsing overview

- Basic problem with both top-down and bottom-up construction: non-determinism
- Non-deterministic search is inefficient
- E.g., consider <S> : := <S>a | <S>b | ϵ. Top-down parser must "guess" the entire input string at the beginning (breadth-first backtracking search takes exponential time in length of input string, depth-first does not terminate).
- Algorithms for parsing any context free grammar in cubic ${ }^{1}$ time, based on dynamic programming (Earley, and Cocke-Younger-Kasami).

[^0]
Parsing overview

- Basic problem with both top-down and bottom-up construction: non-determinism
- Non-deterministic search is inefficient
- E.g., consider $\langle S\rangle$: := <S>a | <S>b | ϵ. Top-down parser must "guess" the entire input string at the beginning (breadth-first backtracking search takes exponential time in length of input string, depth-first does not terminate).
- Algorithms for parsing any context free grammar in cubic ${ }^{1}$ time, based on dynamic programming (Earley, and Cocke-Younger-Kasami).
- Parser generators use these same ideas, but restricted to cases where we can eliminate non-determinism.
- Possible for both top-down and bottom-up style
- Today: LL (Left-to-right, Leftmost derivation) parsers: top-down
- Easy to understand \& write by hand
- Next time: $L R$ (Left-to-right, Rightmost derivation) parsers: bottom-up
- More general, (variations) implemented in parser generators

[^1]
LL parsing

$$
\begin{aligned}
& \langle\mathrm{S}\rangle::=\langle\mathrm{B}\rangle+\langle\mathrm{S}\rangle \mid\langle\mathrm{B}\rangle \\
& \langle\mathrm{B}\rangle::=(\langle\mathrm{S}\rangle) \mid \mathrm{x}
\end{aligned}
$$

- "Any time top of the stack is a non-terminal A, non-deterministically choose a production $A::=\gamma \in R$. Pop A off the stack, and push γ "
- Key problem: need to deterministically choose which production to use
- Solution: Look at the next input symbol, but don't consume it (lookahead)
- This is $L L(1)$ parsing. $L L(k)$ allows k lookahead tokens
- We say that a grammar is $L L(k)$ if when we look ahead k symbols in a top-down parser, we know which rule we should apply.
- Let $G=(N, \Sigma, R, S)$ be a grammar. G is $L L(k)$ iff: for any $S \Rightarrow^{*} \alpha A \beta$, for any word $w \in \Sigma^{k}$, if there is some $A::=\gamma \in R$ such that $\gamma \beta \Rightarrow^{*} w \beta^{\prime}$ (for some β^{\prime}), then γ is unique.
- Not every context-free language has an $L L(k)$ grammar.
- $\left\{a^{i} b^{j}: i=j \vee 2 i=j\right\}$ is not $L L(k)$ for any k
- Which of the following are $L L(1)$ grammars?
- <S> ::= $\mathrm{a}<\mathrm{S}>|\mathrm{b}<\mathrm{S}>| \epsilon$
- <S> ::= <S>a| <S>b| ϵ
- <S> ::= +<S>| $\langle B\rangle::=(\langle S\rangle) \mid x$
- We say that a grammar is $L L(k)$ if when we look ahead k symbols in a top-down parser, we know which rule we should apply.
- Let $G=(N, \Sigma, R, S)$ be a grammar. G is $L L(k)$ iff: for any $S \Rightarrow^{*} \alpha A \beta$, for any word $w \in \Sigma^{k}$, if there is some $A::=\gamma \in R$ such that $\gamma \beta \Rightarrow^{*} w \beta^{\prime}$ (for some β^{\prime}), then γ is unique.
- Not every context-free language has an $L L(k)$ grammar.
- $\left\{a^{i} b^{j}: i=j \vee 2 i=j\right\}$ is not $L L(k)$ for any k
- Which of the following are $L L(1)$ grammars?
- <S> ::= a<S> |b<S> | ϵ

More generally, any grammar that results from our DFA \rightarrow CFG conversion

- <S> ::= <S>a| <S>b| ϵ
- <S> ::= +<S> |
$\langle B\rangle::=(\langle S\rangle) \mid x$

Left-factoring

- The grammar

$$
\begin{aligned}
& \langle\mathrm{S}\rangle::=\langle\mathrm{B}\rangle+\langle\mathrm{S}\rangle \mid\langle\mathrm{B}\rangle \\
& \langle\mathrm{B}\rangle::=(\langle\mathrm{S}\rangle) \mid \mathrm{x}
\end{aligned}
$$

is not LL(1): (lookahead can't distinguish the two <S> rules

- However, there is an $\operatorname{LL}(1)$ grammar for the language

Left-factoring

- The grammar

$$
\begin{aligned}
& \langle S\rangle::=\langle B\rangle+\langle S\rangle \mid\langle B\rangle \\
& \langle B\rangle::=(\langle S\rangle) \mid x
\end{aligned}
$$

is not LL(1): (lookahead can't distinguish the two <S> rules

- However, there is an $\operatorname{LL}(1)$ grammar for the language

$$
\begin{aligned}
& \langle S\rangle::=\langle B\rangle<R> \\
& \langle R\rangle::=+\langle S\rangle \mid \epsilon \\
& \langle B\rangle::=(\langle S\rangle) \mid x
\end{aligned}
$$

- General strategy: factor out rules with common prefixes ("left factoring")

Eliminating left recursion

- A grammar is left-recursive if there is a non-terminal A such that $A \Rightarrow^{+} A \gamma$ (for some γ)
- Left-recursive grammars are not $L L(k)$ for any k
- Consider:

$$
\begin{aligned}
& \langle S\rangle::=\langle S\rangle+\langle B\rangle|<B\rangle \\
& \langle B\rangle::=(\langle S\rangle) \mid x
\end{aligned}
$$

Eliminating left recursion

- A grammar is left-recursive if there is a non-terminal A such that $A \Rightarrow^{+} A \gamma$ (for some γ)
- Left-recursive grammars are not $L L(k)$ for any k
- Consider:

$$
\begin{aligned}
& \langle S\rangle::=\langle\mathrm{S}\rangle+\langle\mathrm{B}\rangle|<\mathrm{B}\rangle \\
& \langle\mathrm{B}\rangle::=(\langle\mathrm{S}\rangle) \mid \mathrm{x}
\end{aligned}
$$

Can remove left recursion as follows:

$$
\begin{aligned}
&\langle\mathrm{S}\rangle: \\
&\left\langle\mathrm{S}^{\prime}\right\rangle\left.::=+\mathrm{B}\rangle\langle\mathrm{~S}\rangle><\mathrm{S}^{\prime}\right\rangle \mid \epsilon \\
&\langle\mathrm{B}\rangle: \\
&=(\langle\mathrm{S}\rangle) \mid \mathrm{x}
\end{aligned}
$$

(Recognizes the same language, but parse trees are different!)

Mechanical construction of $\mathrm{LL}(1)$ parsers

- Fix a grammar $G=(N, \Sigma, R, S)$
- For any word $\gamma \in(N \cup \Sigma)^{*}$, define first $(\gamma)=\left\{a \in \Sigma: \gamma \Rightarrow^{*} a w\right\}$
- For any word $\gamma \in(N \cup \Sigma)^{*}$, say that γ is nullable if $\gamma \Rightarrow^{*} \epsilon$
- For any non-terminal A, define follow $(A)=\left\{a \in \Sigma: \exists \gamma, \gamma^{\prime} . S \Rightarrow \gamma A a \gamma^{\prime}\right\}$

Mechanical construction of LL(1) parsers

- Fix a grammar $G=(N, \Sigma, R, S)$
- For any word $\gamma \in(N \cup \Sigma)^{*}$, define first $(\gamma)=\left\{a \in \Sigma: \gamma \Rightarrow^{*} a w\right\}$
- For any word $\gamma \in(N \cup \Sigma)^{*}$, say that γ is nullable if $\gamma \Rightarrow^{*} \epsilon$
- For any non-terminal A, define follow $(A)=\left\{a \in \Sigma: \exists \gamma, \gamma^{\prime} . S \Rightarrow \gamma A a \gamma^{\prime}\right\}$
- Transition table δ for G can be computed using first, follow, and nullable:
(1) For each non-terminal A and letter a, initialize $\delta(A, a)$ to \emptyset
(2) For each rule $A::=\gamma$
- Add γ to $\delta(A, a)$ for each $a \in \operatorname{first}(\gamma)$
- If γ is nullable, add γ to $\delta(A, a)$ for each $a \in$ follow (A)

Mechanical construction of LL(1) parsers

- Fix a grammar $G=(N, \Sigma, R, S)$
- For any word $\gamma \in(N \cup \Sigma)^{*}$, define $\operatorname{first}(\gamma)=\left\{a \in \Sigma: \gamma \Rightarrow^{*} a w\right\}$
- For any word $\gamma \in(N \cup \Sigma)^{*}$, say that γ is nullable if $\gamma \Rightarrow^{*} \epsilon$
- For any non-terminal A, define follow $(A)=\left\{a \in \Sigma: \exists \gamma, \gamma^{\prime} . S \Rightarrow \gamma A a \gamma^{\prime}\right\}$
- Transition table δ for G can be computed using first, follow, and nullable:
(1) For each non-terminal A and letter a, initialize $\delta(A, a)$ to \emptyset
(2) For each rule $A::=\gamma$
- Add γ to $\delta(A, a)$ for each $a \in \operatorname{first}(\gamma)$
- If γ is nullable, add γ to $\delta(A, a)$ for each $a \in$ follow (A)
- G is $L L(1)$ iff $\delta(A, a)$ is empty or singleton for all A and a

Mechanical construction of LL(1) parsers

- Fix a grammar $G=(N, \Sigma, R, S)$
- For any word $\gamma \in(N \cup \Sigma)^{*}$, define first $(\gamma)=\left\{a \in \Sigma: \gamma \Rightarrow^{*} a w\right\}$
- For any word $\gamma \in(N \cup \Sigma)^{*}$, say that γ is nullable if $\gamma \Rightarrow^{*} \epsilon$
- For any non-terminal A, define follow $(A)=\left\{a \in \Sigma: \exists \gamma, \gamma^{\prime} . S \Rightarrow \gamma A a \gamma^{\prime}\right\}$
- Transition table δ for G can be computed using first, follow, and nullable:
(1) For each non-terminal A and letter a, initialize $\delta(A, a)$ to \emptyset
(2) For each rule $A::=\gamma$
- Add γ to $\delta(A, a)$ for each $a \in \operatorname{first}(\gamma)$
- If γ is nullable, add γ to $\delta(A, a)$ for each $a \in$ follow (A)
- G is $L L(1)$ iff $\delta(A, a)$ is empty or singleton for all A and a
- Operation of the parser on a word w :
- Start with stack <S>
- While w not empty
- If top of the stack is a terminal a and $w=a w^{\prime}$, pop and set $w=w^{\prime}$
- If top of the stack is a non-terminal A and $w=a w^{\prime}$, pop and push (singleton) $\delta(A, w)$ (or reject if $\delta(A, w)$ is empty)
- Accept if stack is empty; reject otherwise.

Computing nullable

- nullable is the smallest set of non-terminals such that if there is some $A::=\gamma_{1} \ldots \gamma_{n} \in R$ with $\gamma_{1}, \ldots, \gamma_{n} \in$ nullable implies $A \in$ nullable
- Fixpoint computation:
- nullable ${ }_{0}=\emptyset$
- nullable $_{i+1}=\left\{A: \exists \gamma_{1}, \ldots, \gamma_{n} \in\right.$ nullable $\left._{i . A}::=\gamma_{1} \ldots \gamma_{n} \in R\right\}$
- nullable $=\bigcup_{i=0}^{\infty}$ nullable $_{i}$
nullable $\leftarrow \emptyset$;
changed \leftarrow true;
while changed do
changed \leftarrow false;
for $A:=\gamma_{1} \ldots \gamma_{n} \in R$ do
if $A \notin$ nullable $\wedge \gamma_{1}, \ldots, \gamma_{n} \in$ nullable then
nullable \leftarrow nullable $\cup\{A\}$;
changed \leftarrow true;

Computing nullable

- nullable is the smallest set of non-terminals such that if there is some $A::=\gamma_{1} \ldots \gamma_{n} \in R$ with $\gamma_{1}, \ldots, \gamma_{n} \in$ nullable implies $A \in$ nullable
- Fixpoint computation:
- nullable ${ }_{0}=\emptyset$
- nullable $e_{i+1}=\left\{A: \exists \gamma_{1}, \ldots, \gamma_{n} \in\right.$ nullable $\left._{i} . A::=\gamma_{1} \ldots \gamma_{n} \in R\right\}$
- nullable $=\bigcup_{i=0}^{\infty}$ nullable $_{i}$
nullable $\leftarrow \emptyset$;
changed \leftarrow true;
while changed do
changed \leftarrow false;
for $A:=\gamma_{1} \ldots \gamma_{n} \in R$ do
if $A \notin$ nullable $\wedge \gamma_{1}, \ldots, \gamma_{n} \in$ nullable then
nullable \leftarrow nullable $\cup\{A\}$;
changed \leftarrow true;
- Fixpoint computations appear everywhere!
- Later we will see how they are used in dataflow analysis

Computing first and follow

- first is the smallest function ${ }^{2}$ such that
- For each $a \in \Sigma, \operatorname{first}(a)=\{a\}$
- For each $A::=\gamma_{1} \ldots \gamma_{i} \ldots \gamma_{n} \in R$, with $\gamma_{1}, \ldots, \gamma_{i-1}$ nullable, first $(A) \supseteq$ first $\left(\gamma_{i}\right)$
- follow is the smallest function such that
- For each $A::=\gamma_{1} \ldots \gamma_{i} \ldots \gamma_{n} \in R$, with $\gamma_{i+1}, \ldots, \gamma_{n}$ nullable, follow $\left(\gamma_{i}\right) \supseteq$ follow (A)
- For each $A::=\gamma_{1} \ldots \gamma_{i} \ldots \gamma_{j} \ldots \gamma_{n} \in R$, with $\gamma_{i+1}, \ldots, \gamma_{j-1}$ nullable, follow $\left(\gamma_{i}\right) \supseteq$ first $\left(\gamma_{j}\right)$
- Both can be computed using a fixpoint algorithm, like nullable

[^2]
[^0]: ${ }^{1}$ Also sub-cubic galactic algorithms: Valiant 1975

[^1]: ${ }^{1}$ Also sub-cubic galactic algorithms: Valiant 1975

[^2]: ${ }^{2}$ Pointwise order: $f \leq g$ if for all $x, f(x) \leq g(x)$

