COS320: Compiling Techniques

Zak Kincaid

March 30, 2022

Generic (forward) dataflow analysis algorithm

- Given:
- Abstract domain $(\mathcal{L}, \sqsubseteq, \sqcup, \perp, \top)$
- Transfer function post $_{\mathcal{L}}:$ Basic Block $\times \mathcal{L} \rightarrow \mathcal{L}$
- Control flow graph $G=(N, E, s)$
- Compute: least annotation IN, OUT such that
(1) $\mathbf{I N}[s]=T$
(2) For all $n \in N, \operatorname{post}_{\mathcal{L}}(n, \mathbf{I N}[n]) \sqsubseteq \mathbf{O U T}[n]$
(3) For all $p \rightarrow n \in E$, OUT $[p] \sqsubseteq \mathbf{I N}(n)$
$\mathbf{I N}[s]=\mathrm{T}, \mathbf{O U T}[s]=\perp$;
$\mathbf{I N}[n]=\mathbf{O U T}[n]=\perp$ for all other nodes n;
work $\leftarrow N$;
while work $\neq \emptyset$ do
Pick some n from work;
work \leftarrow work $\backslash\{n\}$;
old $\leftarrow \mathbf{O U T}[n]$;
$\mathbf{I N}[n] \leftarrow \mathbf{I N}[n] \sqcup \bigsqcup_{p \in \operatorname{pred}(n)} \mathbf{O U T}[p] ;$
OUT $[n] \leftarrow$ post $_{\mathcal{L}}(n, \mathbf{I N}[n]) ;$
if old $\neq \mathbf{O U T}[n]$ then
work \leftarrow work $\cup \operatorname{succ}(n)$
return IN, OUT

(Partial) Correctness

```
IN[s]= ',OUT [s]= 谉
IN [n]=\mathbf{OUT}[n]=\perp for all other nodes n;
work }\leftarrowN\mathrm{ ;
while work }\not=\emptyset\mathrm{ do
    Pick some n from work;
    work }\leftarrow\mathrm{ work \{n};
    old }\leftarrow\mathbf{OUT}[n]
    IN[n]}\leftarrow\mathbf{IN}[n]\sqcup\underset{p\inpred(n)}{\bigsqcup}\mathbf{OUT}[p]
    OUT [n]}\leftarrow\mp@subsup{\operatorname{post}}{\mathcal{L}}{(}(n,\mathbf{IN}[n])
    if old }\not=\mathbf{OUT}[n]\mathrm{ then
        work \leftarrow \leftarrowwork \cup succ(n)
return IN, OUT
```

When algorithm terminates, all constraints are satisfied. Invariants:

- $\mathbf{I N}[s]=\top$
- For any $n \in N$, if $\operatorname{post}_{\mathcal{L}}(n, \mathbf{I N}[n]) \nsubseteq \mathbf{O U T}[n]$, we have $n \in$ work
- For any $p \rightarrow n \in E$ with $\mathbf{O U T}[p] \nsubseteq \mathbf{I N}(n)$, we have $n \in$ work

Optimality

Algorithm computes least solution.

- Invariant: IN $\sqsubseteq^{*} \overline{\mathbf{I N}}$ and OUT $\sqsubseteq^{*} \overline{\mathbf{O U T}}$, where
- $\overline{\mathrm{IN}} / \overline{\mathrm{OUT}}$ denotes any solution to the constraint system
- \sqsubseteq^{*} is pointwise order on function space $N \rightarrow \mathcal{L}$

Optimality

Algorithm computes least solution.

- Invariant: IN $\sqsubseteq^{*} \overline{\mathbf{I N}}$ and OUT $\sqsubseteq^{*} \overline{\mathbf{O U T}}$, where
- $\overline{\mathrm{IN}} / \overline{\mathbf{O U T}}$ denotes any solution to the constraint system
- \sqsubseteq^{*} is pointwise order on function space $N \rightarrow \mathcal{L}$
- Argument: let $\mathbf{I N}_{i} / \mathbf{O U T}_{i}$ be IN/OUT at iteration $i ; n_{i}$ be workset item
- Base case $\mathbf{I N}_{0} \sqsubseteq^{*} \overline{\mathbf{I N}}$ and $\mathbf{O U T}_{0} \sqsubseteq^{*} \overline{\mathbf{O U T}}$ is easy
- Inductive step:
- $\mathbf{I N}_{i+1}\left[n_{i}\right]=\mathbf{I N}_{i}\left[n_{i}\right] \sqcup \bigsqcup_{p \rightarrow n_{i} \in E} \mathbf{O U T}_{i}[p] \sqsubseteq \mathbf{I N}_{i}\left[n_{i}\right] \sqcup \bigsqcup_{p \rightarrow n_{i} \in E} \overline{\mathbf{O U T}}[p] \sqsubseteq \overline{\mathbf{I N}}\left[n_{i}\right]$
- $\mathbf{O U T}_{i+1}\left[n_{i}\right]=\operatorname{post}_{\mathcal{L}}\left(n_{i}, \mathbf{I N}_{i+1}\left[n_{i}\right]\right) \sqsubseteq \operatorname{post}_{\mathcal{L}}\left(n_{i}, \overline{\mathbf{I N}}\left[n_{i}\right]\right) \sqsubseteq \overline{\mathbf{O U T}}\left[n_{i}\right]$
- For any $n \neq n_{i}, \mathbf{I N}_{i+1}[n]=\mathbf{I N}_{i}[n] \sqsubseteq \overline{\mathbf{I N}}\left[n_{i}\right]$

Termination

- Why does this algorithm terminate?

Termination

- Why does this algorithm terminate?
- In general, it doesn't

Termination

- Why does this algorithm terminate?
- In general, it doesn't
- Ascending chain condition is sufficient.
- A partial order \sqsubseteq satisfies the ascending chain condition if any infinite ascending sequence

$$
x_{1} \sqsubseteq x_{2} \sqsubseteq x_{3} \sqsubseteq \ldots
$$

eventually stabilizes: for some i, we have $x_{j}=x_{i}$ for all $j \geq i$.

Termination

- Why does this algorithm terminate?
- In general, it doesn't
- Ascending chain condition is sufficient.
- A partial order \sqsubseteq satisfies the ascending chain condition if any infinite ascending sequence

$$
x_{1} \sqsubseteq x_{2} \sqsubseteq x_{3} \sqsubseteq \ldots
$$

eventually stabilizes: for some i, we have $x_{j}=x_{i}$ for all $j \geq i$.

- Fact: X is finite $\Rightarrow\left(2^{X}, \subseteq\right)$ and $\left(2^{X}, \supseteq\right)$ satisfy a.c.c. (available expressions)

Termination

- Why does this algorithm terminate?
- In general, it doesn't
- Ascending chain condition is sufficient.
- A partial order \sqsubseteq satisfies the ascending chain condition if any infinite ascending sequence

$$
x_{1} \sqsubseteq x_{2} \sqsubseteq x_{3} \sqsubseteq \ldots
$$

eventually stabilizes: for some i, we have $x_{j}=x_{i}$ for all $j \geq i$.

- Fact: X is finite $\Rightarrow\left(2^{X}, \subseteq\right)$ and $\left(2^{X}, \supseteq\right)$ satisfy a.c.c. (available expressions)
- Fact: X is finite and $(\mathcal{L}, \sqsubseteq)$ satisfies a.c.c. $\Rightarrow\left(X \rightarrow \mathcal{L}, \sqsubseteq^{*}\right)$ satisfies a.c.c. (constant propagation)

Termination

- Why does this algorithm terminate?
- In general, it doesn't
- Ascending chain condition is sufficient.
- A partial order \sqsubseteq satisfies the ascending chain condition if any infinite ascending sequence

$$
x_{1} \sqsubseteq x_{2} \sqsubseteq x_{3} \sqsubseteq \ldots
$$

eventually stabilizes: for some i, we have $x_{j}=x_{i}$ for all $j \geq i$.

- Fact: X is finite $\Rightarrow\left(2^{X}, \subseteq\right)$ and $\left(2^{X}, \supseteq\right)$ satisfy a.c.c. (available expressions)
- Fact: X is finite and $(\mathcal{L}, \sqsubseteq)$ satisfies a.c.c. $\Rightarrow\left(X \rightarrow \mathcal{L}, \sqsubseteq^{*}\right)$ satisfies a.c.c. (constant propagation)
- Termination argument:
- If $(\mathcal{L}, \sqsubseteq)$ satisfies a.c.c., so does the space of annotations $\left(N \rightarrow \mathcal{L}, \sqsubseteq^{*}\right)$
- $\mathbf{O U T}_{0} \sqsubseteq^{*} \mathbf{O U T}_{1} \sqsubseteq^{*} \ldots$, where $\mathbf{O U T}_{i}$ is the OUT annotation at iteration i
- This sequence eventually stabilizes \Rightarrow algorithm terminates

Local vs. Global constraints

- We had two specifications for available expressions
- Global: e available at entry of n iff for every path from s to n in G :
(1) the expression e is evaluated along the path
(2) after the last evaluation of e along the path, no variables in e are overwritten
- Local: IN, OUT is least annotation such that
(1) $\mathbf{I N}[s]=\mathrm{T}$
(2) For all $n \in N$, post $_{\mathcal{L}}(n, \mathbf{I N}[n]) \sqsubseteq \mathbf{O U T}[n]$
(3) For all $p \rightarrow n \in E$, OUT $[p] \sqsubseteq \mathbf{I N}(n)$
- Why are these specifications the same?

Coincidence

- Let $(\mathcal{L}, \sqsubseteq, \sqcup, \perp, \top)$ be an abstract domain and let post ${ }_{\mathcal{L}}$ be a transfer function.
- "Global specification" is formulated as join over paths:

$$
\mathbf{J O P}[n]=\bigsqcup_{\pi \in \operatorname{Path}(s, n)} \operatorname{post}_{\mathcal{L}}(\pi, \top)
$$

where $\operatorname{Path}(s, n)$ denotes set of paths from s to n, and post ${ }_{\mathcal{L}}$ is extended to paths by taking

$$
\operatorname{post}_{\mathcal{L}}\left(n_{1} n_{2} \ldots n_{k}, \top\right)=\operatorname{post}_{\mathcal{L}}\left(n_{k}, \ldots, \operatorname{post}_{\mathcal{L}}\left(n_{1}, \top\right)\right)
$$

Coincidence

- Let $(\mathcal{L}, \sqsubseteq, \sqcup, \perp, \top)$ be an abstract domain and let post $\mathcal{L}_{\mathcal{L}}$ be a transfer function.
- "Global specification" is formulated as join over paths:

$$
\mathbf{J O P}[n]=\bigsqcup_{\pi \in \operatorname{Path}(s, n)} \operatorname{post}_{\mathcal{L}}(\pi, \top)
$$

where $\operatorname{Path}(s, n)$ denotes set of paths from s to n, and post ${ }_{\mathcal{L}}$ is extended to paths by taking

$$
\operatorname{post}_{\mathcal{L}}\left(n_{1} n_{2} \ldots n_{k}, \top\right)=\operatorname{post}_{\mathcal{L}}\left(n_{k}, \ldots, \operatorname{post}_{\mathcal{L}}\left(n_{1}, \top\right)\right)
$$

- Coincidence theorem (Kildall, Kam \& Ullman): let $(\mathcal{L}, \sqsubseteq, \sqcup, \perp, \top)$ be an abstract domain satisfying the a.c.c., post ${ }_{\mathcal{L}}$ be a distributive transfer function, and IN/OUT be least solution to
(1) $\operatorname{IN}[s]=T$
(2) For all $n \in N$, post $_{\mathcal{L}}(n, \mathbf{I N}[n]) \sqsubseteq \mathbf{O U T}[n]$
(3) For all $p \rightarrow n \in E$, OUT $[p] \sqsubseteq \mathbf{I N}(n)$

Then for all $n, \mathbf{J O P}[n]=\mathbf{I N}[n]$.

Coincidence

- Let $(\mathcal{L}, \sqsubseteq, \sqcup, \perp, \top)$ be an abstract domain and let post $\mathcal{L}_{\mathcal{L}}$ be a transfer function.
- "Global specification" is formulated as join over paths:

$$
\mathbf{J O P}[n]=\bigsqcup_{\pi \in \operatorname{Path}(s, n)} \operatorname{post}_{\mathcal{L}}(\pi, \top)
$$

where $\operatorname{Path}(s, n)$ denotes set of paths from s to n, and post ${ }_{\mathcal{L}}$ is extended to paths by taking

$$
\operatorname{post}_{\mathcal{L}}\left(n_{1} n_{2} \ldots n_{k}, \top\right)=\operatorname{post}_{\mathcal{L}}\left(n_{k}, \ldots, \operatorname{post}_{\mathcal{L}}\left(n_{1}, \top\right)\right)
$$

- Coincidence theorem (Kildall, Kam \& Ullman): let $(\mathcal{L}, \sqsubseteq, \sqcup, \perp, \top)$ be an abstract domain satisfying the a.c.c., post ${ }_{\mathcal{L}}$ be a distributive transfer function, and IN/OUT be least solution to
(1) $\mathbf{I N}[s]=T$
(2) For all $n \in N, \operatorname{post}_{\mathcal{L}}(n, \mathbf{I N}[n]) \sqsubseteq \mathbf{O U T}[n]$
(3) For all $p \rightarrow n \in E$, OUT $[p] \sqsubseteq \mathbf{I N}(n)$

Then for all $n, \mathbf{J O P}[n]=\mathbf{I N}[n]$.

- $\operatorname{post}_{\mathcal{L}}$ is distributive if for all $x, y \in \mathcal{L}, \operatorname{post}_{\mathcal{L}}(n, x \sqcup y)=\operatorname{post}_{\mathcal{L}}(n, x) \sqcup \operatorname{post}_{\mathcal{L}}(n, y)$

Available expressions

Recall transfer function post ${ }_{A E}$ for available expressions:

$$
\operatorname{post}_{A E}(x=e, E)=\left\{e^{\prime} \in(E \cup\{e\}): x \text { not in } e^{\prime}\right\}
$$

post $_{A E}$ is distributive:

$$
\begin{aligned}
\operatorname{post}_{A E}\left(x=e, E_{1} \cap E_{2}\right) & =\left\{e^{\prime} \in\left(\left(E_{1} \cap E_{2}\right) \cup\{e\}\right): x \text { not in } e^{\prime}\right\} \\
& \left.=\left\{e^{\prime} \in E_{1} \cup\{e\}\right): x \text { not in } e^{\prime}\right\} \cap\left\{e^{\prime} \in\left(E_{2} \cup\{e\}\right): x \text { not in } e^{\prime}\right\} \\
& =\operatorname{post}_{A E}\left(x=e, E_{1}\right) \cap \operatorname{post}_{A E}\left(x=e, E_{2}\right)
\end{aligned}
$$

Constant propagation

Is post ${ }_{C P}$ distributive?

Constant propagation

Is post ${ }_{C P}$ distributive?

$$
\begin{aligned}
\operatorname{post}_{C P}(x:=x+y,\{x \mapsto 0, y \mapsto 1\} \sqcup\{x \mapsto 1, y \mapsto 0\}) & =\operatorname{post}_{C P}(x:=x+y,\{x \mapsto \top, y \mapsto \top\}) \\
& =\{x \mapsto \top, y \mapsto \top\}
\end{aligned}
$$

Constant propagation

Is post ${ }_{C P}$ distributive?

$$
\begin{aligned}
\operatorname{post}_{C P}(x:=x+y,\{x \mapsto 0, y \mapsto 1\} \sqcup\{x \mapsto 1, y \mapsto 0\}) & =\operatorname{post}_{C P}(x:=x+y,\{x \mapsto \top, y \mapsto \top\}) \\
& =\{x \mapsto \top, y \mapsto \top\}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{post}_{C P}(x:=x+y,\{x \mapsto 0, y \mapsto 1\}) & =\{x \mapsto 1, y \mapsto 1\} \\
\operatorname{post}_{C P}(x:=x+y,\{x \mapsto 1, y \mapsto 0\}) & =\{x \mapsto 1, y \mapsto 0\} \\
\{x \mapsto 1, y \mapsto 1\} \sqcup\{x \mapsto 1, y \mapsto 0\} & =\{x \mapsto 1, y \mapsto \top\}
\end{aligned}
$$

Gen/kill analyses

- Suppose we have a finite set of data flow "facts"
- Elements of the abstract domain are sets of facts
- For each basic block n, associate a set of generated facts gen (n) and killed facts kill(n)
- Define post $\left.\mathcal{L}^{(} n, F\right)=(F \backslash$ kill $(n)) \cup \operatorname{gen}(n)$.

Gen/kill analyses

- Suppose we have a finite set of data flow "facts"
- Elements of the abstract domain are sets of facts
- For each basic block n, associate a set of generated facts gen (n) and killed facts kill(n)
- Define post $\left.\mathcal{L}^{(} n, F\right)=(F \backslash \operatorname{kill}(n)) \cup$ gen (n).
- The order on sets of facts may be \subseteq or $?$
- \subseteq used for existential analyses: a fact holds at n if it holds along some path to n
- E.g., a variable is possibly-uninitialized at n if it is possibly-uninitialized along some path to n.
- \supseteq used for universal analyses: a fact holds at n if it holds along all paths to n
- E.g., an expression is available at n if it is available along all paths to n

Gen/kill analyses

- Suppose we have a finite set of data flow "facts"
- Elements of the abstract domain are sets of facts
- For each basic block n, associate a set of generated facts gen (n) and killed facts kill(n)
- Define post $\left.\mathcal{L}^{(} n, F\right)=(F \backslash \operatorname{kill}(n)) \cup$ gen (n).
- The order on sets of facts may be \subseteq or \supseteq
- \subseteq used for existential analyses: a fact holds at n if it holds along some path to n
- E.g., a variable is possibly-uninitialized at n if it is possibly-uninitialized along some path to n.
- \supseteq used for universal analyses: a fact holds at n if it holds along all paths to n
- E.g., an expression is available at n if it is available along all paths to n
- In either case, post $_{\mathcal{L}}$ is monotone and distributive

$$
\begin{aligned}
\operatorname{post}_{\mathcal{L}}(n, F \cup G) & =((F \cup G) \backslash \text { kill }(n)) \cup \operatorname{gen}(n) \\
& =((F \backslash \text { kill }(n)) \cup(G \backslash \text { kill }(n))) \cup \operatorname{gen}(n) \\
& =((F \backslash \operatorname{kill}(n)) \cup \operatorname{gen}(n)) \cup(((G \backslash \operatorname{kill}(n))) \cup \operatorname{gen}(n)) \\
& =\operatorname{post}_{\mathcal{L}}(n, F) \cup \operatorname{post}_{\mathcal{L}}(n, G)
\end{aligned}
$$

Possibly-uninitialized variables analysis

- A variable x is possibly-uninitialized at a location n if there is some path from start to n along which x is never written to.
- If n uses an uninitialized variable, that could indicate undefined behavior
- Can catch these errors at compile time using possibly-uninitialized variable analysis
- E.g. javac does this by default
- Possibly-unintialized variables as a dataflow analysis problem:

Possibly-uninitialized variables analysis

- A variable x is possibly-uninitialized at a location n if there is some path from start to n along which x is never written to.
- If n uses an uninitialized variable, that could indicate undefined behavior
- Can catch these errors at compile time using possibly-uninitialized variable analysis
- E.g. javac does this by default
- Possibly-unintialized variables as a dataflow analysis problem:
- Abstract domain: $2^{V a r}$ (each $V \in 2^{V a r}$ represents a set of possibly-uninitialized vars)
- Existential \Rightarrow order is \subseteq, join is \cup, T is Var, \perp is \emptyset

Possibly-uninitialized variables analysis

- A variable x is possibly-uninitialized at a location n if there is some path from start to n along which x is never written to.
- If n uses an uninitialized variable, that could indicate undefined behavior
- Can catch these errors at compile time using possibly-uninitialized variable analysis
- E.g. javac does this by default
- Possibly-unintialized variables as a dataflow analysis problem:
- Abstract domain: $2^{V a r}$ (each $V \in 2^{V a r}$ represents a set of possibly-uninitialized vars)
- Existential \Rightarrow order is \subseteq, join is \cup, T is Var, \perp is \emptyset
- $\operatorname{kill}(x:=e)=\{x\}$
- $\operatorname{gen}(x:=e)=\emptyset$

Reaching definitions analysis

- A definition is a pair (n, x) consisting of a basic block n, and a variable x such that n contains an assignment to x.
- We say that a definitoin (n, x) reaches a node m if there is a path from start to m such that the latest definition of x along the path is at n
- Reaching definitions as a data flow analysis:

Reaching definitions analysis

- A definition is a pair (n, x) consisting of a basic block n, and a variable x such that n contains an assignment to x.
- We say that a definitoin (n, x) reaches a node m if there is a path from start to m such that the latest definition of x along the path is at n
- Reaching definitions as a data flow analysis:
- Abstract domain: $2^{N \times V a r}$
- Existential \Rightarrow order is \subseteq, join is \cup, T is $N \times$ Var, \perp is \emptyset
- $\operatorname{kill}(n)=\{(m, x): m \in N,(x:=e)$ in $n\}$
- gen $(n)=\{(n, x):(x:=e)$ in $n\}$

Wrap-up

- In a compiler, program analysis is used to inform optimization
- Outside of compilers: verification, testing, software understanding...
- Dataflow analysis is a particular family of progam analyses, which operates by solving a constraint system over an ordered set
- Gen/kill analysis are a sub-family with nice properties
- The basic idea of solving constraints systems over ordered sets appears in lotss of different places!
- Parsing - computation of first, follow, nullable
- Networking - computing shortest parths
- Automated planning - distance-to-goal estimation

