COS320: Compiling Techniques

Zak Kincaid

March 30, 2022

Generic (forward) dataflow analysis algorithm

- Given:
 - Abstract domain $(\mathcal{L}, \sqsubseteq, \sqcup, \bot, \top)$
 - Transfer function
 post_C: Basic Block × L → L
 - Control flow graph G = (N, E, s)
- Compute: least annotation IN, OUT such that
 - 1 IN[s] = \top
 - 2 For all $n \in N$, $post_{\mathcal{L}}(n, \mathbf{IN}[n]) \sqsubseteq \mathbf{OUT}[n]$
 - 3 For all $p \to n \in E$, $\mathbf{OUT}[p] \sqsubseteq \mathbf{IN}(n)$

```
IN[s] = \top, OUT[s] = \bot;
IN[n] = OUT[n] = \bot for all other nodes n:
work \leftarrow N:
while work \neq \emptyset do
       Pick some n from work:
      work \leftarrow work \setminus \{n\};
      old \leftarrow \mathbf{OUT}[n]:
      \mathbf{IN}[n] \leftarrow \mathbf{IN}[n] \sqcup
                                               \mathbf{OUT}[p];
                                  p \in pred(n)
      \mathbf{OUT}[n] \leftarrow \mathsf{post}_{\mathcal{L}}(n, \mathbf{IN}[n]);
      if old \neq \mathbf{OUT}[n] then
             work \leftarrow work \cup succ(n)
return IN. OUT
```

(Partial) Correctness

```
IN[s] = \top, OUT[s] = \bot;
IN[n] = OUT[n] = \bot for all other nodes n;
work \leftarrow N:
while work \neq \emptyset do
      Pick some n from work:
      work \leftarrow work \setminus \{n\};
      old \leftarrow \mathbf{OUT}[n]:
      \mathbf{IN}[n] \leftarrow \mathbf{IN}[n] \sqcup 
                                              \mathbf{OUT}[p];
                                 p \in pred(n)
      \mathbf{OUT}[n] \leftarrow \mathsf{post}_{\mathcal{L}}(n, \mathbf{IN}[n]);
      if old \neq \mathbf{OUT}[n] then
             work \leftarrow work \cup succ(n)
return IN. OUT
```

When algorithm terminates, all constraints are satisfied. Invariants:

- $\mathbf{IN}[s] = \top$
- For any $n \in N$, if $post_{\mathcal{L}}(n, \mathbf{IN}[n]) \not\sqsubseteq \mathbf{OUT}[n]$, we have $n \in work$
- For any $p \to n \in E$ with $\mathbf{OUT}[p] \not\sqsubseteq \mathbf{IN}(n)$, we have $n \in work$

Optimality

Algorithm computes *least* solution.

- Invariant: IN $\sqsubseteq^* \overline{\text{IN}}$ and $\overline{\text{OUT}} \sqsubseteq^* \overline{\text{OUT}}$, where
 - $\overline{IN}/\overline{OUT}$ denotes any solution to the constraint system
 - \sqsubseteq^* is pointwise order on function space $N \to \mathcal{L}$

Optimality

Algorithm computes *least* solution.

- Invariant: IN $\sqsubseteq^* \overline{\text{IN}}$ and OUT $\sqsubseteq^* \overline{\text{OUT}}$, where
 - $\overline{\rm IN}/\overline{\rm OUT}$ denotes any solution to the constraint system
 - \sqsubseteq^* is pointwise order on function space $N \to \mathcal{L}$
- Argument: let IN_i/OUT_i be IN/OUT at iteration i; n_i be workset item
 - Base case $IN_0 \sqsubseteq^* \overline{IN}$ and $OUT_0 \sqsubseteq^* \overline{OUT}$ is easy
 - Inductive step:
 - $\mathbf{IN}_{i+1}[n_i] = \mathbf{IN}_i[n_i] \sqcup \bigsqcup_{p \to n_i \in E} \mathbf{OUT}_i[p] \sqsubseteq \mathbf{IN}_i[n_i] \sqcup \bigsqcup_{p \to n_i \in E} \overline{\mathbf{OUT}}[p] \sqsubseteq \overline{\mathbf{IN}}[n_i]$
 - $\mathbf{OUT}_{i+1}[n_i] = \mathbf{post}_{\mathcal{L}}(n_i, \mathbf{IN}_{i+1}[n_i]) \sqsubseteq \underline{\mathbf{post}}_{\mathcal{L}}(n_i, \overline{\mathbf{IN}}[n_i]) \sqsubseteq \overline{\mathbf{OUT}}[n_i]$
 - For any $n \neq n_i$, $\mathbf{IN}_{i+1}[n] = \mathbf{IN}_i[n] \sqsubseteq \overline{\mathbf{IN}}[n_i]$

• Why does this algorithm terminate?

- Why does this algorithm terminate?
 - In general, it doesn't

- Why does this algorithm terminate?
 - In general, it doesn't
- Ascending chain condition is sufficient.
 - A partial order

 satisfies the ascending chain condition if any infinite ascending sequence

$$x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \dots$$

eventually stabilizes: for some i, we have $x_j = x_i$ for all $j \ge i$.

- Why does this algorithm terminate?
 - In general, it doesn't
- Ascending chain condition is sufficient.
 - A partial order

 satisfies the ascending chain condition if any infinite ascending sequence

$$x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \dots$$

eventually stabilizes: for some i, we have $x_j = x_i$ for all $j \ge i$.

• Fact: X is finite $\Rightarrow (2^X, \subseteq)$ and $(2^X, \supseteq)$ satisfy a.c.c. (available expressions)

- Why does this algorithm terminate?
 - In general, it doesn't
- Ascending chain condition is sufficient.

$$x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \dots$$

eventually stabilizes: for some i, we have $x_i = x_i$ for all $j \ge i$.

- Fact: X is finite $\Rightarrow (2^X, \subseteq)$ and $(2^X, \supseteq)$ satisfy a.c.c. (available expressions)
- Fact: X is finite and $(\mathcal{L},\sqsubseteq)$ satisfies a.c.c. $\Rightarrow (X \to \mathcal{L},\sqsubseteq^*)$ satisfies a.c.c. (constant propagation)

- Why does this algorithm terminate?
 - In general, it doesn't
- Ascending chain condition is sufficient.
 - ullet A partial order \sqsubseteq satisfies the ascending chain condition if any infinite ascending sequence

$$x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \dots$$

eventually stabilizes: for some i, we have $x_j = x_i$ for all $j \ge i$.

- Fact: X is finite $\Rightarrow (2^X, \subseteq)$ and $(2^X, \supseteq)$ satisfy a.c.c. (available expressions)
- Fact: X is finite and $(\mathcal{L},\sqsubseteq)$ satisfies a.c.c. $\Rightarrow (X \to \mathcal{L},\sqsubseteq^*)$ satisfies a.c.c. (constant propagation)
- Termination argument:
 - If $(\mathcal{L}, \sqsubseteq)$ satisfies a.c.c., so does the space of annotations $(N \to \mathcal{L}, \sqsubseteq^*)$
 - $\mathbf{OUT}_0 \sqsubseteq^* \mathbf{OUT}_1 \sqsubseteq^* \dots$, where \mathbf{OUT}_i is the \mathbf{OUT} annotation at iteration i
 - ullet This sequence eventually stabilizes \Rightarrow algorithm terminates

Local vs. Global constraints

- We had two specifications for available expressions
 - **Global**: e available at entry of n iff for every path from s to n in G:
 - 1 the expression e is evaluated along the path
 - 2 after the *last* evaluation of e along the path, no variables in e are overwritten
 - Local: IN. OUT is *least* annotation such that
 - 1 IN[s] = \top
 - **2** For all $n \in N$, $post_{\mathcal{L}}(n, \mathbf{IN}[n]) \sqsubseteq \mathbf{OUT}[n]$
 - 3 For all $p \to n \in E$, $\mathbf{OUT}[p] \sqsubseteq \mathbf{IN}(n)$
- Why are these specifications the same?

Coincidence

- Let $(\mathcal{L}, \sqsubseteq, \sqcup, \bot, \top)$ be an abstract domain and let *post* $_{\mathcal{L}}$ be a transfer function.
 - "Global specification" is formulated as join over paths:

$$\mathbf{JOP}[n] = \bigsqcup_{\pi \in \textit{Path}(s,n)} \textit{post}_{\mathcal{L}}(\pi,\top)$$

where Path(s, n) denotes set of paths from s to n, and $post_{\mathcal{L}}$ is extended to paths by taking

$$post_{\mathcal{L}}(n_1n_2\ldots n_k,\top) = post_{\mathcal{L}}(n_k,\ldots,post_{\mathcal{L}}(n_1,\top))$$

Coincidence

- Let $(\mathcal{L}, \sqsubseteq, \sqcup, \bot, \top)$ be an abstract domain and let *post*_c be a transfer function.
 - "Global specification" is formulated as join over paths:

$$\mathbf{JOP}[n] = \bigsqcup_{\pi \in \textit{Path}(s,n)} \textit{post}_{\mathcal{L}}(\pi,\top)$$

where Path(s, n) denotes set of paths from s to n, and $post_{\mathcal{L}}$ is extended to paths by taking

$$post_{\mathcal{L}}(n_1 n_2 \dots n_k, \top) = post_{\mathcal{L}}(n_k, \dots, post_{\mathcal{L}}(n_1, \top))$$

- Coincidence theorem (Kildall, Kam & Ullman): let $(\mathcal{L},\sqsubseteq,\sqcup,\perp,\top)$ be an abstract domain satisfying the a.c.c., $post_{\mathcal{L}}$ be a *distributive* transfer function, and \mathbf{IN}/\mathbf{OUT} be least solution to
 - 1 IN[s] = \top
 - 2 For all $n \in N$, $post_{\mathcal{L}}(n, \mathbf{IN}[n]) \sqsubseteq \mathbf{OUT}[n]$
 - **3** For all $p \to n \in E$, $\mathbf{OUT}[p] \sqsubseteq \mathbf{IN}(n)$

Then for all n, $\mathbf{JOP}[n] = \mathbf{IN}[n]$.

Coincidence

- Let $(\mathcal{L}, \sqsubseteq, \sqcup, \bot, \top)$ be an abstract domain and let *post*_c be a transfer function.
 - "Global specification" is formulated as join over paths:

$$\mathbf{JOP}[n] = igsqcup_{\pi \in \mathit{Path}(s,n)} \mathit{post}_{\mathcal{L}}(\pi, \top)$$

where Path(s,n) denotes set of paths from s to n, and $\textit{post}_{\mathcal{L}}$ is extended to paths by taking

$$post_{\mathcal{L}}(n_1 n_2 \dots n_k, \top) = post_{\mathcal{L}}(n_k, \dots, post_{\mathcal{L}}(n_1, \top))$$

- Coincidence theorem (Kildall, Kam & Ullman): let $(\mathcal{L},\sqsubseteq,\sqcup,\perp,\top)$ be an abstract domain satisfying the a.c.c., $post_{\mathcal{L}}$ be a *distributive* transfer function, and \mathbf{IN}/\mathbf{OUT} be least solution to
 - $\mathbf{1}$ $\mathbf{IN}[s] = \top$
 - 2 For all $n \in N$, $post_{\mathcal{L}}(n, \mathbf{IN}[n]) \sqsubseteq \mathbf{OUT}[n]$
 - 3 For all $p \to n \in E$, $\mathbf{OUT}[p] \sqsubseteq \mathbf{IN}(n)$

Then for all n, JOP[n] = IN[n].

• $post_{\mathcal{L}}$ is distributive if for all $x, y \in \mathcal{L}$, $post_{\mathcal{L}}(n, x \sqcup y) = post_{\mathcal{L}}(n, x) \sqcup post_{\mathcal{L}}(n, y)$

Available expressions

Recall transfer function $post_{AF}$ for available expressions:

$$post_{AE}(x = e, E) = \{e' \in (E \cup \{e\}) : x \text{ not in } e'\}$$

 $post_{AF}$ is distributive:

$$\begin{aligned} \textit{post}_{\textit{AE}}(x = e, E_1 \cap E_2) &= \{e' \in ((E_1 \cap E_2) \cup \{e\}) : x \text{ not in } e'\} \\ &= \{e' \in E_1 \cup \{e\}) : x \text{ not in } e'\} \cap \{e' \in (E_2 \cup \{e\}) : x \text{ not in } e'\} \\ &= \textit{post}_{\textit{AE}}(x = e, E_1) \cap \textit{post}_{\textit{AE}}(x = e, E_2) \end{aligned}$$

Constant propagation

Is $post_{CP}$ distributive?

Constant propagation

Is post_{CP} distributive?

$$\begin{aligned} \textit{post}_{\textit{CP}}(x := x + y, \{x \mapsto 0, y \mapsto 1\} \sqcup \{x \mapsto 1, y \mapsto 0\}) &= \textit{post}_{\textit{CP}}(x := x + y, \{x \mapsto \top, y \mapsto \top\}) \\ &= \{x \mapsto \top, y \mapsto \top\} \end{aligned}$$

Constant propagation

Is post_{CP} distributive?

$$\begin{aligned} \textit{post}_\textit{CP}(x := x + y, \{x \mapsto 0, y \mapsto 1\} \sqcup \{x \mapsto 1, y \mapsto 0\}) &= \textit{post}_\textit{CP}(x := x + y, \{x \mapsto \top, y \mapsto \top\}) \\ &= \{x \mapsto \top, y \mapsto \top\} \end{aligned}$$

$$\begin{aligned} & \textit{post}_{\textit{CP}}(x := x + y, \{x \mapsto 0, y \mapsto 1\}) = \{x \mapsto 1, y \mapsto 1\} \\ & \textit{post}_{\textit{CP}}(x := x + y, \{x \mapsto 1, y \mapsto 0\}) = \{x \mapsto 1, y \mapsto 0\} \\ & \{x \mapsto 1, y \mapsto 1\} \sqcup \{x \mapsto 1, y \mapsto 0\} = \{x \mapsto 1, y \mapsto \top\} \end{aligned}$$

Gen/kill analyses

- Suppose we have a finite set of data flow "facts"
- Elements of the abstract domain are sets of facts
- For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
- Define $post_{\mathcal{L}}(n, F) = (F \setminus kill(n)) \cup gen(n)$.

Gen/kill analyses

- Suppose we have a finite set of data flow "facts"
- Elements of the abstract domain are sets of facts
- For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
- Define $post_{\mathcal{L}}(n, F) = (F \setminus kill(n)) \cup gen(n)$.
- The *order* on sets of facts may be \subseteq or \supseteq
 - \subseteq used for *existential* analyses: a fact holds at n if it holds along *some* path to n
 - ullet E.g., a variable is possibly-uninitialized at n if it is possibly-uninitialized along some path to n.
 - \supseteq used for *universal* analyses: a fact holds at n if it holds along *all* paths to n
 - ullet E.g., an expression is available at n if it is available along all paths to n

Gen/kill analyses

- Suppose we have a finite set of data flow "facts"
- Elements of the abstract domain are sets of facts
- For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
- Define $post_{\mathcal{L}}(n, F) = (F \setminus kill(n)) \cup gen(n)$.
- The *order* on sets of facts may be \subseteq or \supseteq
 - \subseteq used for *existential* analyses: a fact holds at n if it holds along *some* path to n
 - ullet E.g., a variable is possibly-uninitialized at n if it is possibly-uninitialized along some path to n.
 - \supseteq used for *universal* analyses: a fact holds at n if it holds along *all* paths to n
 - ullet E.g., an expression is available at n if it is available along all paths to n
- In either case, post c is monotone and distributive

$$\begin{aligned} \mathsf{post}_{\mathcal{L}}(n, F \cup G) &= ((F \cup G) \setminus \mathit{kill}(n)) \cup \mathsf{gen}(n) \\ &= ((F \setminus \mathit{kill}(n)) \cup (G \setminus \mathit{kill}(n))) \cup \mathsf{gen}(n) \\ &= ((F \setminus \mathit{kill}(n)) \cup \mathsf{gen}(n)) \cup (((G \setminus \mathit{kill}(n))) \cup \mathsf{gen}(n)) \\ &= \mathsf{post}_{\mathcal{L}}(n, F) \cup \mathsf{post}_{\mathcal{L}}(n, G) \end{aligned}$$

Possibly-uninitialized variables analysis

- A variable x is possibly-uninitialized at a location n if there is some path from start to n
 along which x is never written to.
- If n uses an uninitialized variable, that could indicate undefined behavior
 - Can catch these errors at compile time using possibly-uninitialized variable analysis
 - E.g. javac does this by default
- Possibly-unintialized variables as a dataflow analysis problem:

Possibly-uninitialized variables analysis

- A variable x is possibly-uninitialized at a location n if there is some path from start to n
 along which x is never written to.
- If n uses an uninitialized variable, that could indicate undefined behavior
 - Can catch these errors at compile time using possibly-uninitialized variable analysis
 - E.g. javac does this by default
- Possibly-unintialized variables as a dataflow analysis problem:
 - Abstract domain: 2^{Var} (each $V \in 2^{Var}$ represents a set of possibly-uninitialized vars)
 - *Existential* \Rightarrow order is \subseteq , join is \cup , \top is Var, \bot is \emptyset

Possibly-uninitialized variables analysis

- A variable x is possibly-uninitialized at a location n if there is some path from start to n
 along which x is never written to.
- If n uses an uninitialized variable, that could indicate undefined behavior
 - Can catch these errors at compile time using possibly-uninitialized variable analysis
 - E.g. javac does this by default
- Possibly-unintialized variables as a dataflow analysis problem:
 - Abstract domain: 2^{Var} (each $V \in 2^{Var}$ represents a set of possibly-uninitialized vars)
 - *Existential* \Rightarrow order is \subseteq , join is \cup , \top is Var, \bot is \emptyset
 - $kill(x := e) = \{x\}$
 - $gen(x := e) = \emptyset$

Reaching definitions analysis

- A definition is a pair (n, x) consisting of a basic block n, and a variable x such that n contains an assignment to x.
- We say that a definition (n, x) reaches a node m if there is a path from start to m such that the latest definition of x along the path is at n
- Reaching definitions as a data flow analysis:

Reaching definitions analysis

- A definition is a pair (n, x) consisting of a basic block n, and a variable x such that n contains an assignment to x.
- We say that a definition (n, x) reaches a node m if there is a path from start to m such that the latest definition of x along the path is at n
- Reaching definitions as a data flow analysis:
 - Abstract domain: $2^{N \times Var}$
 - *Existential* \Rightarrow order is \subseteq , join is \cup , \top is $N \times Var$, \bot is \emptyset
 - $kill(n) = \{(m, x) : m \in N, (x := e) \text{ in } n\}$
 - $gen(n) = \{(n, x) : (x := e) \text{ in } n\}$

Wrap-up

- In a compiler, program analysis is used to inform optimization
 - Outside of compilers: verification, testing, software understanding...
- Dataflow analysis is a particular family of progam analyses, which operates by solving a constraint system over an ordered set
 - Gen/kill analysis are a sub-family with nice properties
 - The basic idea of solving constraints systems over ordered sets appears in lotss of different places!
 - Parsing computation of first, follow, nullable
 - Networking computing shortest parths
 - Automated planning distance-to-goal estimation
 - •