COS320: Compiling Techniques

Zak Kincaid

March 23, 2022

Analysis and Optimization

Compiler phases (simplified)

Optimization

- Optimization operates as a sequence of IR-to-IR transformations. Each transformation is expected to:
- improve performance (time, space, power)
- not change the high-level (defined) behavior of the program
- Each optimization pass does something small and simple.
- Combination of passes can yield sophisticated transformations

Optimization

- Optimization operates as a sequence of IR-to-IR transformations. Each transformation is expected to:
- improve performance (time, space, power)
- not change the high-level (defined) behavior of the program
- Each optimization pass does something small and simple.
- Combination of passes can yield sophisticated transformations
- Optimization simplifies compiler writing
- More modular: can translate to IR in a simple-but-inefficient way, then optimize
- Optimization simplifies programming
- Programmer can spend less time thinking about low-level performance issues
- More portable: compiler can take advantage of the characteristics of a particular machine

Algebraic simplification

Idea: replace complex expressions with simpler / cheaper ones

$$
\begin{gathered}
e * 1 \rightarrow e \\
0+e \rightarrow e \\
2 * 3 \rightarrow 6 \\
-(-e) \rightarrow e \\
e * 4 \rightarrow e « 2
\end{gathered}
$$

Loop unrolling

- Idea: avoid branching by trading space for time.
- Can expose opportunities for using SIMD instructions

```
long array_sum (long *a, long n) {
    long i;
    long sum = 0;
    for (i=0; i< n; i++) {
        sum += * (a+i);
    }
    return sum;
}
```

```
long array_sum (long *a, long n) {
    long i;
    long sum = 0;
    for (i=0; i<n % 4; i++) {
        sum += *(a + i);
    }
    for (; i< n; i += 4) {
        sum += *(a + i);
        sum += *(a+i+1);
        sum += *(a+i+2);
        sum += *(a+i+3);
    }
    return sum;
}
```

Strength reduction

Idea: replace expensive operation (e.g., multiplication) w/ cheaper one (e.g., addition).

```
long trace (long *m, long n) {
long trace (long *m, long n) {
    long i;
    long result = 0;
    long *next = m;
    long result = 0;
    for (i=0; i< n; i++) {
    for (i=0;i<n;i++) { , for (i=0;i<n;
    }
    return result;
        next += n + 1;
    }
    return result;
}
```


Optimization and Analysis

- Program analysis: conservatively approximate the run-time behavior of a program at compile time.
- Type inference: find the type of value each expression will evaluate to at run time. Conservative in the sense that the analysis will abort if it cannot find a type for a variable, even if one exists.
- Constant propagation: if a variable only holds on value at run time, find that value. Conservative in the sense that analysis may fail to find constant values for variables that have them.

Optimization and Analysis

- Program analysis: conservatively approximate the run-time behavior of a program at compile time.
- Type inference: find the type of value each expression will evaluate to at run time. Conservative in the sense that the analysis will abort if it cannot find a type for a variable, even if one exists.
- Constant propagation: if a variable only holds on value at run time, find that value. Conservative in the sense that analysis may fail to find constant values for variables that have them.
- Optimization passes are typically informed by analysis
- Analysis lets us know which transformations are safe
- Conservative analysis \Rightarrow never perform an unsafe optimization, but may miss some safe optimizations.

Control Flow Graphs (CFG)

- Control flow graphs are one of the basic data structures used to represent programs in many program analyses
- Recall: A control flow graph (CFG) for a procedure P is a directed, rooted graph $G=(N, E, r)$ where
- The nodes are basic blocks of P
- There is an edge $n_{i} \rightarrow n_{j} \in E$ iff n_{j} may execute immediately after n_{i}
- There is a distinguished entry block r where the execution of the procedure begins

Simple imperative language

- Suppose that we have the following language:

$$
\begin{aligned}
& \text { <instr> }::=<\text { var }>=\text { add<opn>, <opn> } \\
& \mid \text { <var> }=\text { mul<opn>, <opn> } \\
& \mid \text { <var> }=\text { opn } \\
& \text { <opn> }::=\text { <int> |<var> } \\
& \text { <block> }::=<\text { instr><block> |<term> } \\
& \text { <term> }::=\text { blez<opn>, <label>, <label> } \\
& \mid \text { return <opn> } \\
& \text { <program> }::=<\text { program> <label> : <block> |<block> }
\end{aligned}
$$

- Note: no uids, no SSA
- We'll take a look at how SSA affects program analysis later

Constant propagation

- The goal of constant propagation: determine at each instruction I a constant environment
- A constant environment is a symbol table mapping each variable x to one of:
- an integer n (indicating that x 's value is n whenever the program is at l)
- \top (indicating that x might take more than one value at I)
- \perp (indicating that x may take no values at run-time $-I$ is unreachable)
- Motivation: can evaluate expressions at compile time to save on run time

$$
\begin{aligned}
& \mathrm{x}=\operatorname{add} 1,2 \\
& \mathrm{y}=\operatorname{mul} \mathrm{x}, 11 \\
& \mathrm{z}=\operatorname{add} \mathrm{x}, \mathrm{y}
\end{aligned}
$$

Constant propagation

- The goal of constant propagation: determine at each instruction I a constant environment
- A constant environment is a symbol table mapping each variable x to one of:
- an integer n (indicating that x 's value is n whenever the program is at l)
- \top (indicating that x might take more than one value at I)
- \perp (indicating that x may take no values at run-time $-I$ is unreachable)
- Motivation: can evaluate expressions at compile time to save on run time
$\{\mathrm{x} \mapsto \mathrm{T}, \mathrm{y} \mapsto \mathrm{T}, \mathrm{z} \mapsto \mathrm{T}\}$

$$
\begin{aligned}
& \mathrm{x}=\operatorname{add} 1,2 \\
& \mathrm{y}=\operatorname{mul} \mathrm{x}, 11 \\
& \mathrm{z}=\operatorname{add} \mathrm{x}, \mathrm{y}
\end{aligned}
$$

Constant propagation

- The goal of constant propagation: determine at each instruction I a constant environment
- A constant environment is a symbol table mapping each variable x to one of:
- an integer n (indicating that x 's value is n whenever the program is at l)
- \top (indicating that x might take more than one value at I)
- \perp (indicating that x may take no values at run-time $-I$ is unreachable)
- Motivation: can evaluate expressions at compile time to save on run time
$\{\mathrm{x} \mapsto \mathrm{\top}, \mathrm{y} \mapsto \mathrm{T}, \mathrm{z} \mapsto \mathrm{\top}\}$
$\{\mathrm{x} \mapsto 3, \mathrm{y} \mapsto \mathrm{\top}, \mathrm{z} \mapsto \mathrm{\top}\}$
$\mathrm{x}=\operatorname{add} 1,2$
$\mathrm{y}=\operatorname{mul} \mathrm{x}, 11$
z = add x, y

Constant propagation

- The goal of constant propagation: determine at each instruction I a constant environment
- A constant environment is a symbol table mapping each variable x to one of:
- an integer n (indicating that x 's value is n whenever the program is at l)
- \top (indicating that x might take more than one value at I)
- \perp (indicating that x may take no values at run-time $-I$ is unreachable)
- Motivation: can evaluate expressions at compile time to save on run time
$\{\mathrm{x} \mapsto \top, \mathrm{y} \mapsto \top, \mathrm{z} \mapsto \top\}$
$\{\mathrm{x} \mapsto 3, \mathrm{y} \mapsto \mathrm{\top}, \mathrm{z} \mapsto \top\}$
$\mathrm{x}=$ add 1,2
$\{\mathrm{x} \mapsto 3, \mathrm{y} \mapsto 33, \mathrm{z} \mapsto \top\}$
$y=m u l x, 11$
$\mathrm{z}=\operatorname{add} \mathrm{x}, \mathrm{y}$

Constant propagation

- The goal of constant propagation: determine at each instruction I a constant environment
- A constant environment is a symbol table mapping each variable x to one of:
- an integer n (indicating that x 's value is n whenever the program is at l)
- \top (indicating that x might take more than one value at I)
- \perp (indicating that x may take no values at run-time $-I$ is unreachable)
- Motivation: can evaluate expressions at compile time to save on run time
$\{\mathrm{x} \mapsto \top, \mathrm{y} \mapsto \top, \mathrm{z} \mapsto \top\}$
$\{\mathrm{x} \mapsto 3, \mathrm{y} \mapsto \mathrm{\top}, \mathrm{z} \mapsto \top\}$
$x=3$
$\{\mathrm{x} \mapsto 3, \mathrm{y} \mapsto 33, \mathrm{z} \mapsto \top\}$
$y=m u l x, 11$
$\mathrm{z}=\operatorname{add} \mathrm{x}, \mathrm{y}$

Constant propagation

- The goal of constant propagation: determine at each instruction I a constant environment
- A constant environment is a symbol table mapping each variable x to one of:
- an integer n (indicating that x 's value is n whenever the program is at l)
- \top (indicating that x might take more than one value at I)
- \perp (indicating that x may take no values at run-time $-I$ is unreachable)
- Motivation: can evaluate expressions at compile time to save on run time
$\{\mathrm{x} \mapsto \top, \mathrm{y} \mapsto \top, \mathrm{z} \mapsto \top\}$
$\{\mathrm{x} \mapsto 3, \mathrm{y} \mapsto \mathrm{\top}, \mathrm{z} \mapsto \mathrm{\top}\}$
$x=3$
$\{\mathrm{x} \mapsto 3, \mathrm{y} \mapsto 33, \mathrm{z} \mapsto \top\}$
$y=33$
$z=\operatorname{add} x, y$

Constant propagation

- The goal of constant propagation: determine at each instruction I a constant environment
- A constant environment is a symbol table mapping each variable x to one of:
- an integer n (indicating that x 's value is n whenever the program is at l)
- \top (indicating that x might take more than one value at I)
- \perp (indicating that x may take no values at run-time $-I$ is unreachable)
- Motivation: can evaluate expressions at compile time to save on run time
$\{\mathrm{x} \mapsto \top, \mathrm{y} \mapsto \top, \mathrm{z} \mapsto \top\}$
$\{\mathrm{x} \mapsto 3, \mathrm{y} \mapsto \mathrm{\top}, \mathrm{z} \mapsto \top\}$
$x=3$
$\{\mathrm{x} \mapsto 3, \mathrm{y} \mapsto 33, \mathrm{z} \mapsto \top\}$
$y=33$
$z=36$

Propagating constants through instructions

- Goal: given a constant environment C and an instruction
- $x=$ add $o p n_{1}, o p n_{2}$
- $x=$ mul $o p n_{1}, o p n_{2}$
- $x=o p n$

Assuming that constant environment C holds before the instruction, what is the constant environment after the instruction?

Propagating constants through instructions

- Goal: given a constant environment C and an instruction
- $x=$ add $o p n_{1}, o p n_{2}$
- $x=$ mul $o p n_{1}, o p n_{2}$
- $x=o p n$

Assuming that constant environment C holds before the instruction, what is the constant environment after the instruction?

- Define an evaluator for operands:

$$
\operatorname{eval}(\mathrm{opn}, C)= \begin{cases}C(\mathrm{opn}) & \text { if opn is a variable } \\ \text { opn } & \text { if opn is an int }\end{cases}
$$

Propagating constants through instructions

- Goal: given a constant environment C and an instruction
- $x=$ add $o p n_{1}, o p n_{2}$
- $x=$ mul $o p n_{1}, o p n_{2}$
- $x=o p n$

Assuming that constant environment C holds before the instruction, what is the constant environment after the instruction?

- Define an evaluator for operands:

$$
\operatorname{eval}(\mathrm{opn}, C)= \begin{cases}C(\mathrm{opn}) & \text { if opn is a variable } \\ \text { opn } & \text { if opn is an int }\end{cases}
$$

- Define an evaluator for instructions:

$$
\operatorname{post}(\text { instr }, C)= \begin{cases}\perp & \text { if } C \text { is } \perp \\ C\{x \mapsto \operatorname{eval}(\text { opn }, C)\} & \text { if instr is } x=\text { opn } \\ C\{x \mapsto \top\} & \text { if } \operatorname{eval}\left(o p n_{1}, C\right)=\top \vee \operatorname{eval}\left(o p n_{2}, C\right)=\top \\ C\left\{x \mapsto \operatorname{eval}(\text { opn } 1, C)+\operatorname{eval}\left(\text { opn }_{2}, C\right)\right\} & \text { if instr is } x=\text { add opn }{ }_{1}, \mathrm{opn}_{2} \\ C\left\{x \mapsto \operatorname{eval}\left(o p n_{1}, C\right) * \operatorname{eval}\left(o p n_{2}, C\right)\right\} & \text { if instr is } x=\text { mul opn }{ }_{1}, \text { opn }_{2}\end{cases}
$$

Propagating constants through basic blocks

- How do we propagate a constant environment through a basic block?

Propagating constants through basic blocks

- How do we propagate a constant environment through a basic block?
- Block takes the form instr $_{1}, \ldots$, instr $_{n}$, term.
take $\operatorname{post}($ block, $C)=\operatorname{post}\left(\right.$ instr $_{n}, \ldots \operatorname{post}\left(\right.$ instr $\left.\left._{1}, C\right) \ldots\right)$

Propagating constants across edges

- If a block has exactly one predecessor: constant environment at entry is constant environment at exit of predecessor

Propagating constants across edges

- If a block has exactly one predecessor: constant environment at entry is constant environment at exit of predecessor
- If a block has multiple predecessors, must combine constant environments of both:

Propagating constants across edges

- If a block has exactly one predecessor: constant environment at entry is constant environment at exit of predecessor
- If a block has multiple predecessors, must combine constant environments of both:

Propagating constants across edges

- If a block has exactly one predecessor: constant environment at entry is constant environment at exit of predecessor
- If a block has multiple predecessors, must combine constant environments of both:
- Merge operator \sqcup defined as:
- $e \sqcup \perp=\perp \sqcup e=e$
- $\left(e_{1} \sqcup e_{2}\right)(x)= \begin{cases}e_{1}(x) & \text { if } e_{1}(x)=e_{2}(x) \\ \top & \text { otherwise }\end{cases}$

Propagating constants through control flow graphs

- For acyclic graphs:

Propagating constants through control flow graphs

- For acyclic graphs: topologically sort basic blocks, propagate constant environments forward
- Constant environment for entry node maps each variable to T

Propagating constants through control flow graphs

- For acyclic graphs: topologically sort basic blocks, propagate constant environments forward
- Constant environment for entry node maps each variable to T
- What about loops?
- Recall: a partial order \sqsubseteq is a binary relation that is
- Reflexive: $a \sqsubseteq a$
- Transitive: $a \sqsubseteq b$ and $b \sqsubseteq c$ implies $a \sqsubseteq c$
- Antisymmetric: $a \sqsubseteq b$ and $b \sqsubseteq a$ implies $a=b$
- Examples: the subset relation, the divisibility relation on the naturals, ...
- Recall: a partial order \sqsubseteq is a binary relation that is
- Reflexive: $a \sqsubseteq a$
- Transitive: $a \sqsubseteq b$ and $b \sqsubseteq c$ implies $a \sqsubseteq c$
- Antisymmetric: $a \sqsubseteq b$ and $b \sqsubseteq a$ implies $a=b$
- Examples: the subset relation, the divisibility relation on the naturals, ...
- Place a partial order on $\mathbb{Z} \cup\{\perp, \top\}: \perp \sqsubseteq n \sqsubseteq \top$ (most information to least information)
- Recall: a partial order \sqsubseteq is a binary relation that is
- Reflexive: $a \sqsubseteq a$
- Transitive: $a \sqsubseteq b$ and $b \sqsubseteq c$ implies $a \sqsubseteq c$
- Antisymmetric: $a \sqsubseteq b$ and $b \sqsubseteq a$ implies $a=b$
- Examples: the subset relation, the divisibility relation on the naturals, ...
- Place a partial order on $\mathbb{Z} \cup\{\perp, \top\}: \perp \sqsubseteq n \sqsubseteq \top$ (most information to least information)
- Lift the ordering to constant environments: $f \sqsubseteq g$ iff $f(x) \sqsubseteq g(x)$ for all x
- $f \sqsubseteq g$: f is a "better" constant environment than g
- f sends x to \top implies g sends x to \top
- Recall: a partial order \sqsubseteq is a binary relation that is
- Reflexive: $a \sqsubseteq a$
- Transitive: $a \sqsubseteq b$ and $b \sqsubseteq c$ implies $a \sqsubseteq c$
- Antisymmetric: $a \sqsubseteq b$ and $b \sqsubseteq a$ implies $a=b$
- Examples: the subset relation, the divisibility relation on the naturals, ...
- Place a partial order on $\mathbb{Z} \cup\{\perp, \top\}: \perp \sqsubseteq n \sqsubseteq \top$ (most information to least information)
- Lift the ordering to constant environments: $f \sqsubseteq g$ iff $f(x) \sqsubseteq g(x)$ for all x
- $f \sqsubseteq g$: f is a "better" constant environment than g
- f sends x to T implies g sends x to \top
- The merge operation \sqcup is the least upper bound in this order:
- $f_{1} \sqsubseteq\left(f_{1} \sqcup f_{2}\right)$ and $f_{2} \sqsubseteq\left(f_{1} \sqcup f_{2}\right)$
- For any f^{\prime} such that $f_{1} \sqsubseteq f^{\prime}$ and $f_{2} \sqsubseteq f^{\prime}$, we have $\left(f_{1} \sqcup f_{2}\right) \sqsubseteq f^{\prime}$

Constant propagation as a constraint system

- Let $G=(N, E, s)$ be a control flow graph.
- For each basic block $b b \in N$, associate two constant environments IN [bb] and OUT[bb]
- $\mathbf{I N}[b b]$ is the constant environment at the entry of $b b$
- OUT $[b b]$ is the constant environment at the exit of $b b$

Constant propagation as a constraint system

- Let $G=(N, E, s)$ be a control flow graph.
- For each basic block $b b \in N$, associate two constant environments IN [bb] and OUT[bb]
- $\mathbf{I N}[b b]$ is the constant environment at the entry of $b b$
- OUT $[b b]$ is the constant environment at the exit of $b b$
- Say that the assignment IN, OUT is conservative if
(1) $\mathrm{IN}[s]$ assigns each variable T
(2. For each node $b b \in N$,

$$
\mathbf{O U T}[b b] \sqsupseteq \operatorname{post}(b b, \mathbf{I N}[b b])
$$

(3) For each edge src $\rightarrow d s t \in E$,

$$
\mathbf{I N}[d s t] \sqsupseteq \mathbf{O U T}[s r c]
$$

Constant propagation as a constraint system

- Let $G=(N, E, s)$ be a control flow graph.
- For each basic block $b b \in N$, associate two constant environments IN [bb] and OUT[bb]
- $\mathbf{I N}[b b]$ is the constant environment at the entry of $b b$
- OUT $[b b]$ is the constant environment at the exit of $b b$
- Say that the assignment IN, OUT is conservative if
(1) $\mathrm{IN}[s]$ assigns each variable T
(2) For each node $b b \in N$,

$$
\mathbf{O U T}[b b] \sqsupseteq \operatorname{post}(b b, \mathbf{I N}[b b])
$$

(3) For each edge s sc $\rightarrow d s t \in E$,

$$
\mathbf{I N}[d s t] \sqsupseteq \mathbf{O U T}[s r c]
$$

- Fact: if IN, OUT is conservative, then
- If $\operatorname{IN}[b b](x)=n$, then whenever program execution reaches $b b$ entry, the value of x is n
- If $\operatorname{IN}[b b](x)=\perp$, then program execution cannot reach $b b$
- Similarly for OUT
- Think of $\operatorname{IN}[b b]$ and $\operatorname{OUT}[b b]$ as variables in a constraint system.
- The constraints may have multiple solutions
- Recall: when constant environment sends a variables x to a constant (not \top), can replace reads to x with that constant
- More constant assigments \Rightarrow more optimization
- Think of IN[bb] and OUT[bb] as variables in a constraint system.
- The constraints may have multiple solutions
- Recall: when constant environment sends a variables x to a constant (not \top), can replace reads to x with that constant
- More constant assigments \Rightarrow more optimization
- Want least conservative assignment
(1) IN, OUT is conservative

2. If $\mathbf{I N}^{\prime}$, OUT $^{\prime}$ is a conservative assignment, then for any $b b$ we have

- $\mathbf{I N}[b b] \sqsubseteq \mathbf{I N}^{\prime}[b b]$
- OUT $[b b] \sqsubseteq \mathbf{O U T}^{\prime}[b b]$

Computing the least conservative assignment of constant environments

- Initialize $\operatorname{IN}[s]$ to the constant environment that sends every variable to \top and $\mathbf{O U T}[s]$ to the constant environment that sends every variable to \perp.
- Initialize IN $[b b]$ and OUT $[b b]$ to the constant environment that sends every variable to \perp for every other basic block

Computing the least conservative assignment of constant environments

- Initialize $\operatorname{IN}[s]$ to the constant environment that sends every variable to T and $\operatorname{OUT}[s]$ to the constant environment that sends every variable to \perp.
- Initialize IN $[b b]$ and $\operatorname{OUT}[b b]$ to the constant environment that sends every variable to \perp for every other basic block
- Choose a constraint that is not satisfied by IN, OUT
- If there is basic block $b b$ with $\operatorname{OUT}[b b] \nexists \operatorname{post}(b b, \mathbf{I N}[b b])$, then set

$$
\operatorname{OUT}[b b]:=\operatorname{post}(b b, \operatorname{IN}[b b])
$$

- If there is an edge src $\rightarrow d s t \in E$ with $\mathbf{I N}[d s t] \nexists \mathbf{O U T}[s r c]$, then set

$$
\mathbf{I N}[d s t]:=\mathbf{I N}[d s t] \sqcup \mathbf{O U T}[s r c]
$$

- Terminate when all constraints are satisfied.

Computing the least conservative assignment of constant environments

- Initialize $\operatorname{IN}[s]$ to the constant environment that sends every variable to \top and $\mathbf{O U T}[s]$ to the constant environment that sends every variable to \perp.
- Initialize IN[bb] and OUT[bb] to the constant environment that sends every variable to \perp for every other basic block
- Choose a constraint that is not satisfied by IN, OUT
- If there is basic block $b b$ with OUT $[b b] \nexists \operatorname{post}(b b, \mathbf{I N}[b b])$, then set

$$
\operatorname{OUT}[b b]:=\operatorname{post}(b b, \operatorname{IN}[b b])
$$

- If there is an edge src $\rightarrow d s t \in E$ with $\mathbf{I N}[d s t] \nexists \mathbf{O U T}[s r c]$, then set

$$
\mathbf{I N}[d s t]:=\mathbf{I N}[d s t] \sqcup \mathbf{O U T}[s r c]
$$

- Terminate when all constraints are satisfied.
- This algorithm always converges on the least conservative assignment of constant environments

Next week: dataflow analysis

- Framework for conservative analysis of program behavior
- Worklist algorithm: general algorithm for solving dataflow analysis problems

