
COS320: Compiling Techniques

Zak Kincaid

March 23, 2022



Analysis and Optimization



Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization



Optimization

• Optimization operates as a sequence of IR-to-IR transformations. Each transformation is
expected to:

• improve performance (time, space, power)
• not change the high-level (defined) behavior of the program

• Each optimization pass does something small and simple.
• Combination of passes can yield sophisticated transformations

• Optimization simplifies compiler writing
• More modular: can translate to IR in a simple-but-inefficient way, then optimize

• Optimization simplifies programming
• Programmer can spend less time thinking about low-level performance issues
• More portable: compiler can take advantage of the characteristics of a particular machine



Optimization

• Optimization operates as a sequence of IR-to-IR transformations. Each transformation is
expected to:

• improve performance (time, space, power)
• not change the high-level (defined) behavior of the program

• Each optimization pass does something small and simple.
• Combination of passes can yield sophisticated transformations

• Optimization simplifies compiler writing
• More modular: can translate to IR in a simple-but-inefficient way, then optimize

• Optimization simplifies programming
• Programmer can spend less time thinking about low-level performance issues
• More portable: compiler can take advantage of the characteristics of a particular machine



Algebraic simplification

Idea: replace complex expressions with simpler / cheaper ones

e ∗ 1 → e

0 + e → e

2 ∗ 3 → 6

−(−e) → e

e ∗ 4 → e«2

. . .



Loop unrolling

• Idea: avoid branching by trading space for time.
• Can expose opportunities for using SIMD instructions

long array_sum (long *a, long n) {
long i;
long sum = 0;
for (i = 0; i < n; i++) {

sum += *(a + i);
}
return sum;

}

→

long array_sum (long *a, long n) {
long i;
long sum = 0;
for (i = 0; i < n % 4; i++) {

sum += *(a + i);
}
for (; i < n; i += 4) {

sum += *(a + i);
sum += *(a + i + 1);
sum += *(a + i + 2);
sum += *(a + i + 3);

}
return sum;

}



Strength reduction

Idea: replace expensive operation (e.g., multiplication) w/ cheaper one (e.g., addition).

long trace (long *m, long n) {
long i;
long result = 0;
for (i = 0; i < n; i++) {

result += *(m + i*n + i);
}
return result;

}

→

long trace (long *m, long n) {
long i;
long result = 0;
long *next = m;
for (i = 0; i < n; i++) {

result += *next;
next += n + 1;

}
return result;

}



Optimization and Analysis

• Program analysis: conservatively approximate the run-time behavior of a program at
compile time.

• Type inference: find the type of value each expression will evaluate to at run time.
Conservative in the sense that the analysis will abort if it cannot find a type for a variable, even
if one exists.

• Constant propagation: if a variable only holds on value at run time, find that value.
Conservative in the sense that analysis may fail to find constant values for variables that have
them.

• Optimization passes are typically informed by analysis
• Analysis lets us know which transformations are safe
• Conservative analysis ⇒ never perform an unsafe optimization, but may miss some safe

optimizations.



Optimization and Analysis

• Program analysis: conservatively approximate the run-time behavior of a program at
compile time.

• Type inference: find the type of value each expression will evaluate to at run time.
Conservative in the sense that the analysis will abort if it cannot find a type for a variable, even
if one exists.

• Constant propagation: if a variable only holds on value at run time, find that value.
Conservative in the sense that analysis may fail to find constant values for variables that have
them.

• Optimization passes are typically informed by analysis
• Analysis lets us know which transformations are safe
• Conservative analysis ⇒ never perform an unsafe optimization, but may miss some safe

optimizations.



Control Flow Graphs (CFG)

int sum_upto(int n) {
int sum = 0;
while (n > 0) {

sum += n;
n--;

}
return sum;

}

store sum = 0

br loop

load tmp1 = n
let tmp2 = 0 - n

cbr lt tmp2 body exit

load tmp4 = sum
load tmp5 = n
let tmp6 = tmp4 + tmp6
store sum = tmp6
load tmp7 = n
let tmp8 = tmp7 - 1
store n = tmp8

br loop
load tmp9 = sum

return tmp9

T
F



• Control flow graphs are one of the basic data structures used to represent programs in
many program analyses

• Recall: A control flow graph (CFG) for a procedure P is a directed, rooted graph
G = (N,E, r) where

• The nodes are basic blocks of P
• There is an edge ni → nj ∈ E iff nj may execute immediately after ni
• There is a distinguished entry block r where the execution of the procedure begins



Simple imperative language

• Suppose that we have the following language:

<instr> ::=<var> = add<opn>, <opn>

| <var> = mul<opn>, <opn>

| <var> = opn

<opn> ::=<int> | <var>
<block> ::=<instr><block> | <term>
<term> ::=blez<opn>, <label>, <label>

| return <opn>

<program> ::=<program> <label> : <block> | <block>

• Note: no uids, no SSA
• We’ll take a look at how SSA affects program analysis later



Constant propagation

• The goal of constant propagation: determine at each instruction I a constant environment
• A constant environment is a symbol table mapping each variable x to one of:

• an integer n (indicating that x’s value is n whenever the program is at I)
• > (indicating that x might take more than one value at I)
• ⊥ (indicating that x may take no values at run-time – I is unreachable)

• Motivation: can evaluate expressions at compile time to save on run time

x = add 1, 2

x = 3

y = mul x, 11

y = 33

z = add x, y

z = 36

{x 7→ >, y 7→ >, z 7→ >}

{x 7→ 3, y 7→ >, z 7→ >}

{x 7→ 3, y 7→ 33, z 7→ >}



Constant propagation

• The goal of constant propagation: determine at each instruction I a constant environment
• A constant environment is a symbol table mapping each variable x to one of:

• an integer n (indicating that x’s value is n whenever the program is at I)
• > (indicating that x might take more than one value at I)
• ⊥ (indicating that x may take no values at run-time – I is unreachable)

• Motivation: can evaluate expressions at compile time to save on run time

x = add 1, 2

x = 3

y = mul x, 11

y = 33

z = add x, y

z = 36

{x 7→ >, y 7→ >, z 7→ >}

{x 7→ 3, y 7→ >, z 7→ >}

{x 7→ 3, y 7→ 33, z 7→ >}



Constant propagation

• The goal of constant propagation: determine at each instruction I a constant environment
• A constant environment is a symbol table mapping each variable x to one of:

• an integer n (indicating that x’s value is n whenever the program is at I)
• > (indicating that x might take more than one value at I)
• ⊥ (indicating that x may take no values at run-time – I is unreachable)

• Motivation: can evaluate expressions at compile time to save on run time

x = add 1, 2

x = 3

y = mul x, 11

y = 33

z = add x, y

z = 36

{x 7→ >, y 7→ >, z 7→ >}

{x 7→ 3, y 7→ >, z 7→ >}

{x 7→ 3, y 7→ 33, z 7→ >}



Constant propagation

• The goal of constant propagation: determine at each instruction I a constant environment
• A constant environment is a symbol table mapping each variable x to one of:

• an integer n (indicating that x’s value is n whenever the program is at I)
• > (indicating that x might take more than one value at I)
• ⊥ (indicating that x may take no values at run-time – I is unreachable)

• Motivation: can evaluate expressions at compile time to save on run time

x = add 1, 2

x = 3

y = mul x, 11

y = 33

z = add x, y

z = 36

{x 7→ >, y 7→ >, z 7→ >}

{x 7→ 3, y 7→ >, z 7→ >}

{x 7→ 3, y 7→ 33, z 7→ >}



Constant propagation

• The goal of constant propagation: determine at each instruction I a constant environment
• A constant environment is a symbol table mapping each variable x to one of:

• an integer n (indicating that x’s value is n whenever the program is at I)
• > (indicating that x might take more than one value at I)
• ⊥ (indicating that x may take no values at run-time – I is unreachable)

• Motivation: can evaluate expressions at compile time to save on run time

x = add 1, 2

x = 3

y = mul x, 11

y = 33

z = add x, y

z = 36

{x 7→ >, y 7→ >, z 7→ >}

{x 7→ 3, y 7→ >, z 7→ >}

{x 7→ 3, y 7→ 33, z 7→ >}



Constant propagation

• The goal of constant propagation: determine at each instruction I a constant environment
• A constant environment is a symbol table mapping each variable x to one of:

• an integer n (indicating that x’s value is n whenever the program is at I)
• > (indicating that x might take more than one value at I)
• ⊥ (indicating that x may take no values at run-time – I is unreachable)

• Motivation: can evaluate expressions at compile time to save on run time

x = add 1, 2

x = 3

y = mul x, 11

y = 33

z = add x, y

z = 36

{x 7→ >, y 7→ >, z 7→ >}

{x 7→ 3, y 7→ >, z 7→ >}

{x 7→ 3, y 7→ 33, z 7→ >}



Constant propagation

• The goal of constant propagation: determine at each instruction I a constant environment
• A constant environment is a symbol table mapping each variable x to one of:

• an integer n (indicating that x’s value is n whenever the program is at I)
• > (indicating that x might take more than one value at I)
• ⊥ (indicating that x may take no values at run-time – I is unreachable)

• Motivation: can evaluate expressions at compile time to save on run time

x = add 1, 2

x = 3

y = mul x, 11

y = 33

z = add x, y

z = 36

{x 7→ >, y 7→ >, z 7→ >}

{x 7→ 3, y 7→ >, z 7→ >}

{x 7→ 3, y 7→ 33, z 7→ >}



Propagating constants through instructions

• Goal: given a constant environment C and an instruction
• x = add opn1, opn2

• x = mul opn1, opn2

• x = opn
Assuming that constant environment C holds before the instruction, what is the constant environment after
the instruction?

• Define an evaluator for operands:

eval(opn,C) =

{
C(opn) if opn is a variable
opn if opn is an int

• Define an evaluator for instructions:

post(instr,C) =



⊥ if C is ⊥
C{x 7→ eval(opn,C)} if instr is x = opn
C{x 7→ >} if eval(opn1,C) = > ∨ eval(opn2,C) = >
C{x 7→ eval(opn1,C) + eval(opn2,C)} if instr is x = add opn1, opn2

C{x 7→ eval(opn1,C) ∗ eval(opn2,C)} if instr is x = mul opn1, opn2



Propagating constants through instructions

• Goal: given a constant environment C and an instruction
• x = add opn1, opn2

• x = mul opn1, opn2

• x = opn
Assuming that constant environment C holds before the instruction, what is the constant environment after
the instruction?

• Define an evaluator for operands:

eval(opn,C) =

{
C(opn) if opn is a variable
opn if opn is an int

• Define an evaluator for instructions:

post(instr,C) =



⊥ if C is ⊥
C{x 7→ eval(opn,C)} if instr is x = opn
C{x 7→ >} if eval(opn1,C) = > ∨ eval(opn2,C) = >
C{x 7→ eval(opn1,C) + eval(opn2,C)} if instr is x = add opn1, opn2

C{x 7→ eval(opn1,C) ∗ eval(opn2,C)} if instr is x = mul opn1, opn2



Propagating constants through instructions

• Goal: given a constant environment C and an instruction
• x = add opn1, opn2

• x = mul opn1, opn2

• x = opn
Assuming that constant environment C holds before the instruction, what is the constant environment after
the instruction?

• Define an evaluator for operands:

eval(opn,C) =

{
C(opn) if opn is a variable
opn if opn is an int

• Define an evaluator for instructions:

post(instr,C) =



⊥ if C is ⊥
C{x 7→ eval(opn,C)} if instr is x = opn
C{x 7→ >} if eval(opn1,C) = > ∨ eval(opn2,C) = >
C{x 7→ eval(opn1,C) + eval(opn2,C)} if instr is x = add opn1, opn2

C{x 7→ eval(opn1,C) ∗ eval(opn2,C)} if instr is x = mul opn1, opn2



Propagating constants through basic blocks

• How do we propagate a constant environment through a basic block?

• Block takes the form instr1, . . . , instrn, term.
take post(block,C) = post(instrn, . . . post(instr1,C) . . . )



Propagating constants through basic blocks

• How do we propagate a constant environment through a basic block?
• Block takes the form instr1, . . . , instrn, term.

take post(block,C) = post(instrn, . . . post(instr1,C) . . . )



Propagating constants across edges

• If a block has exactly one predecessor: constant environment at entry is constant
environment at exit of predecessor

• If a block has multiple predecessors, must combine constant environments of both:

• Merge operator ⊔ defined as:
• e ⊔ ⊥ = ⊥ ⊔ e = e
• (e1 ⊔ e2)(x) =

{
e1(x) if e1(x) = e2(x)
⊤ otherwise

x = 0
y = x+1
z = y+2

br tgt

x = 0
y = 0

br tgt

...

{x 7→ 0, y 7→ 1, z 7→ 3} {x 7→ 0, y 7→ 0, z 7→ >}

{x 7→ 0, y 7→ >, z 7→ >}



Propagating constants across edges

• If a block has exactly one predecessor: constant environment at entry is constant
environment at exit of predecessor

• If a block has multiple predecessors, must combine constant environments of both:

• Merge operator ⊔ defined as:
• e ⊔ ⊥ = ⊥ ⊔ e = e
• (e1 ⊔ e2)(x) =

{
e1(x) if e1(x) = e2(x)
⊤ otherwise

x = 0
y = x+1
z = y+2

br tgt

x = 0
y = 0

br tgt

...

{x 7→ 0, y 7→ 1, z 7→ 3} {x 7→ 0, y 7→ 0, z 7→ >}

{x 7→ 0, y 7→ >, z 7→ >}



Propagating constants across edges

• If a block has exactly one predecessor: constant environment at entry is constant
environment at exit of predecessor

• If a block has multiple predecessors, must combine constant environments of both:

• Merge operator ⊔ defined as:
• e ⊔ ⊥ = ⊥ ⊔ e = e
• (e1 ⊔ e2)(x) =

{
e1(x) if e1(x) = e2(x)
⊤ otherwise

x = 0
y = x+1
z = y+2

br tgt

x = 0
y = 0

br tgt

...

{x 7→ 0, y 7→ 1, z 7→ 3} {x 7→ 0, y 7→ 0, z 7→ >}

{x 7→ 0, y 7→ >, z 7→ >}



Propagating constants across edges

• If a block has exactly one predecessor: constant environment at entry is constant
environment at exit of predecessor

• If a block has multiple predecessors, must combine constant environments of both:
• Merge operator ⊔ defined as:

• e ⊔ ⊥ = ⊥ ⊔ e = e
• (e1 ⊔ e2)(x) =

{
e1(x) if e1(x) = e2(x)
⊤ otherwise

x = 0
y = x+1
z = y+2

br tgt

x = 0
y = 0

br tgt

...

{x 7→ 0, y 7→ 1, z 7→ 3} {x 7→ 0, y 7→ 0, z 7→ >}

{x 7→ 0, y 7→ >, z 7→ >}



Propagating constants through control flow graphs

• For acyclic graphs:

topologically sort basic blocks, propagate constant environments
forward

• Constant environment for entry node maps each variable to ⊤
• What about loops?



Propagating constants through control flow graphs

• For acyclic graphs: topologically sort basic blocks, propagate constant environments
forward

• Constant environment for entry node maps each variable to ⊤

• What about loops?



Propagating constants through control flow graphs

• For acyclic graphs: topologically sort basic blocks, propagate constant environments
forward

• Constant environment for entry node maps each variable to ⊤
• What about loops?



• Recall: a partial order ⊑ is a binary relation that is
• Reflexive: a ⊑ a
• Transitive: a ⊑ b and b ⊑ c implies a ⊑ c
• Antisymmetric: a ⊑ b and b ⊑ a implies a = b

• Examples: the subset relation, the divisibility relation on the naturals, ...

• Place a partial order on Z ∪ {⊥,⊤}: ⊥ ⊑ n ⊑ ⊤ (most information to least information)
• Lift the ordering to constant environments: f ⊑ g iff f(x) ⊑ g(x) for all x

• f ⊑ g: f is a “better” constant environment than g
• f sends x to ⊤ implies g sends x to ⊤

• The merge operation ⊔ is the least upper bound in this order:
• f1 ⊑ (f1 ⊔ f2) and f2 ⊑ (f1 ⊔ f2)
• For any f′ such that f1 ⊑ f′ and f2 ⊑ f′, we have (f1 ⊔ f2) ⊑ f′



• Recall: a partial order ⊑ is a binary relation that is
• Reflexive: a ⊑ a
• Transitive: a ⊑ b and b ⊑ c implies a ⊑ c
• Antisymmetric: a ⊑ b and b ⊑ a implies a = b

• Examples: the subset relation, the divisibility relation on the naturals, ...
• Place a partial order on Z ∪ {⊥,⊤}: ⊥ ⊑ n ⊑ ⊤ (most information to least information)

• Lift the ordering to constant environments: f ⊑ g iff f(x) ⊑ g(x) for all x
• f ⊑ g: f is a “better” constant environment than g
• f sends x to ⊤ implies g sends x to ⊤

• The merge operation ⊔ is the least upper bound in this order:
• f1 ⊑ (f1 ⊔ f2) and f2 ⊑ (f1 ⊔ f2)
• For any f′ such that f1 ⊑ f′ and f2 ⊑ f′, we have (f1 ⊔ f2) ⊑ f′



• Recall: a partial order ⊑ is a binary relation that is
• Reflexive: a ⊑ a
• Transitive: a ⊑ b and b ⊑ c implies a ⊑ c
• Antisymmetric: a ⊑ b and b ⊑ a implies a = b

• Examples: the subset relation, the divisibility relation on the naturals, ...
• Place a partial order on Z ∪ {⊥,⊤}: ⊥ ⊑ n ⊑ ⊤ (most information to least information)
• Lift the ordering to constant environments: f ⊑ g iff f(x) ⊑ g(x) for all x

• f ⊑ g: f is a “better” constant environment than g
• f sends x to ⊤ implies g sends x to ⊤

• The merge operation ⊔ is the least upper bound in this order:
• f1 ⊑ (f1 ⊔ f2) and f2 ⊑ (f1 ⊔ f2)
• For any f′ such that f1 ⊑ f′ and f2 ⊑ f′, we have (f1 ⊔ f2) ⊑ f′



• Recall: a partial order ⊑ is a binary relation that is
• Reflexive: a ⊑ a
• Transitive: a ⊑ b and b ⊑ c implies a ⊑ c
• Antisymmetric: a ⊑ b and b ⊑ a implies a = b

• Examples: the subset relation, the divisibility relation on the naturals, ...
• Place a partial order on Z ∪ {⊥,⊤}: ⊥ ⊑ n ⊑ ⊤ (most information to least information)
• Lift the ordering to constant environments: f ⊑ g iff f(x) ⊑ g(x) for all x

• f ⊑ g: f is a “better” constant environment than g
• f sends x to ⊤ implies g sends x to ⊤

• The merge operation ⊔ is the least upper bound in this order:
• f1 ⊑ (f1 ⊔ f2) and f2 ⊑ (f1 ⊔ f2)
• For any f′ such that f1 ⊑ f′ and f2 ⊑ f′, we have (f1 ⊔ f2) ⊑ f′



Constant propagation as a constraint system

• Let G = (N,E, s) be a control flow graph.
• For each basic block bb ∈ N, associate two constant environments IN[bb] and OUT[bb]

• IN[bb] is the constant environment at the entry of bb
• OUT[bb] is the constant environment at the exit of bb

• Say that the assignment IN,OUT is conservative if
1 IN[s] assigns each variable ⊤
2 For each node bb ∈ N,

OUT[bb] ⊒ post(bb, IN[bb])

3 For each edge src → dst ∈ E,
IN[dst] ⊒ OUT[src]

• Fact: if IN,OUT is conservative, then
• If IN[bb](x) = n, then whenever program execution reaches bb entry, the value of x is n
• If IN[bb](x) = ⊥, then program execution cannot reach bb
• Similarly for OUT



Constant propagation as a constraint system

• Let G = (N,E, s) be a control flow graph.
• For each basic block bb ∈ N, associate two constant environments IN[bb] and OUT[bb]

• IN[bb] is the constant environment at the entry of bb
• OUT[bb] is the constant environment at the exit of bb

• Say that the assignment IN,OUT is conservative if
1 IN[s] assigns each variable ⊤
2 For each node bb ∈ N,

OUT[bb] ⊒ post(bb, IN[bb])

3 For each edge src → dst ∈ E,
IN[dst] ⊒ OUT[src]

• Fact: if IN,OUT is conservative, then
• If IN[bb](x) = n, then whenever program execution reaches bb entry, the value of x is n
• If IN[bb](x) = ⊥, then program execution cannot reach bb
• Similarly for OUT



Constant propagation as a constraint system

• Let G = (N,E, s) be a control flow graph.
• For each basic block bb ∈ N, associate two constant environments IN[bb] and OUT[bb]

• IN[bb] is the constant environment at the entry of bb
• OUT[bb] is the constant environment at the exit of bb

• Say that the assignment IN,OUT is conservative if
1 IN[s] assigns each variable ⊤
2 For each node bb ∈ N,

OUT[bb] ⊒ post(bb, IN[bb])

3 For each edge src → dst ∈ E,
IN[dst] ⊒ OUT[src]

• Fact: if IN,OUT is conservative, then
• If IN[bb](x) = n, then whenever program execution reaches bb entry, the value of x is n
• If IN[bb](x) = ⊥, then program execution cannot reach bb
• Similarly for OUT



• Think of IN[bb] and OUT[bb] as variables in a constraint system.
• The constraints may have multiple solutions

• Recall: when constant environment sends a variables x to a constant (not ⊤), can replace
reads to x with that constant

• More constant assigments ⇒ more optimization

• Want least conservative assignment
1 IN,OUT is conservative
2 If IN′,OUT′ is a conservative assignment, then for any bb we have

• IN[bb] v IN′[bb]
• OUT[bb] v OUT′[bb]



• Think of IN[bb] and OUT[bb] as variables in a constraint system.
• The constraints may have multiple solutions

• Recall: when constant environment sends a variables x to a constant (not ⊤), can replace
reads to x with that constant

• More constant assigments ⇒ more optimization
• Want least conservative assignment

1 IN,OUT is conservative
2 If IN′,OUT′ is a conservative assignment, then for any bb we have

• IN[bb] v IN′[bb]
• OUT[bb] v OUT′[bb]



Computing the least conservative assignment of constant environments

• Initialize IN[s] to the constant environment that sends every variable to ⊤ and OUT[s] to
the constant environment that sends every variable to ⊥.

• Initialize IN[bb] and OUT[bb] to the constant environment that sends every variable to ⊥
for every other basic block

• Choose a constraint that is not satisfied by IN,OUT
• If there is basic block bb with OUT[bb] ̸⊒ post(bb, IN[bb]), then set

OUT[bb] := post(bb, IN[bb])

• If there is an edge src → dst ∈ E with IN[dst] ̸⊒ OUT[src], then set

IN[dst] := IN[dst] ⊔ OUT[src]

• Terminate when all constraints are satisfied.
• This algorithm always converges on the least conservative assignment of constant

environments



Computing the least conservative assignment of constant environments

• Initialize IN[s] to the constant environment that sends every variable to ⊤ and OUT[s] to
the constant environment that sends every variable to ⊥.

• Initialize IN[bb] and OUT[bb] to the constant environment that sends every variable to ⊥
for every other basic block

• Choose a constraint that is not satisfied by IN,OUT
• If there is basic block bb with OUT[bb] ̸⊒ post(bb, IN[bb]), then set

OUT[bb] := post(bb, IN[bb])

• If there is an edge src → dst ∈ E with IN[dst] ̸⊒ OUT[src], then set

IN[dst] := IN[dst] ⊔ OUT[src]

• Terminate when all constraints are satisfied.

• This algorithm always converges on the least conservative assignment of constant
environments



Computing the least conservative assignment of constant environments

• Initialize IN[s] to the constant environment that sends every variable to ⊤ and OUT[s] to
the constant environment that sends every variable to ⊥.

• Initialize IN[bb] and OUT[bb] to the constant environment that sends every variable to ⊥
for every other basic block

• Choose a constraint that is not satisfied by IN,OUT
• If there is basic block bb with OUT[bb] ̸⊒ post(bb, IN[bb]), then set

OUT[bb] := post(bb, IN[bb])

• If there is an edge src → dst ∈ E with IN[dst] ̸⊒ OUT[src], then set

IN[dst] := IN[dst] ⊔ OUT[src]

• Terminate when all constraints are satisfied.
• This algorithm always converges on the least conservative assignment of constant

environments



Next week: dataflow analysis

• Framework for conservative analysis of program behavior
• Worklist algorithm: general algorithm for solving dataflow analysis problems


