COS320: Compiling Techniques

Zak Kincaid

March 23, 2022
Analysis and Optimization
Optimization

- Optimization operates as a sequence of IR-to-IR transformations. Each transformation is expected to:
 - improve performance (time, space, power)
 - not change the high-level (defined) behavior of the program
- Each optimization pass does something small and simple.
 - Combination of passes can yield sophisticated transformations
Optimization

- Optimization operates as a sequence of IR-to-IR transformations. Each transformation is expected to:
 - *improve performance* (time, space, power)
 - *not change the high-level (defined) behavior of the program*
- Each optimization pass does something small and simple.
 - *Combination* of passes can yield sophisticated transformations
- Optimization simplifies compiler writing
 - More modular: can translate to IR in a simple-but-inefficient way, then optimize
- Optimization simplifies programming
 - Programmer can spend less time thinking about low-level performance issues
 - More portable: compiler can take advantage of the characteristics of a particular machine
Algebraic simplification

Idea: replace complex expressions with simpler / cheaper ones

\[e \times 1 \rightarrow e \]
\[0 + e \rightarrow e \]
\[2 \times 3 \rightarrow 6 \]
\[-(−e) \rightarrow e \]
\[e \times 4 \rightarrow e \ll 2 \]
\[\ldots \]
Loop unrolling

- Idea: avoid branching by trading space for time.
- Can expose opportunities for using SIMD instructions

```c
long array_sum (long *a, long n) {
    long i;
    long sum = 0;
    for (i = 0; i < n; i++) {
        sum += *(a + i);
    }
    return sum;
}
```

→

```c
long array_sum (long *a, long n) {
    long i;
    long sum = 0;
    for (i = 0; i < n % 4; i++) {
        sum += *(a + i);
    }
    for (; i < n; i += 4) {
        sum += *(a + i);
        sum += *(a + i + 1);
        sum += *(a + i + 2);
        sum += *(a + i + 3);
    }
    return sum;
}
```
Strength reduction

Idea: replace expensive operation (e.g., multiplication) w/ cheaper one (e.g., addition).

```c
long trace (long *m, long n) {
    long i;
    long result = 0;
    for (i = 0; i < n; i++) {
        result += *(m + i*n + i);
    }
    return result;
}
```

→

```c
long trace (long *m, long n) {
    long i;
    long result = 0;
    long *next = m;
    for (i = 0; i < n; i++) {
        result += *next;
        next += n + 1;
    }
    return result;
}
```
Optimization and Analysis

- **Program analysis**: conservatively approximate the run-time behavior of a program at compile time.
 - Type inference: find the type of value each expression will evaluate to at run time. *Conservative* in the sense that the analysis will abort if it cannot find a type for a variable, even if one exists.
 - Constant propagation: if a variable only holds on value at run time, find that value. *Conservative* in the sense that analysis may fail to find constant values for variables that have them.
 - Optimization passes are typically informed by analysis
 - Analysis lets us know which transformations are safe
 - *Conservative analysis* \Rightarrow never perform an unsafe optimization, but may miss some safe optimizations.
Optimization and Analysis

- **Program analysis**: conservatively approximate the run-time behavior of a program at compile time.
 - Type inference: find the type of value each expression will evaluate to at run time. *Conservative* in the sense that the analysis will abort if it cannot find a type for a variable, even if one exists.
 - Constant propagation: if a variable only holds on value at run time, find that value. *Conservative* in the sense that analysis may fail to find constant values for variables that have them.

- Optimization passes are typically informed by analysis
 - Analysis lets us know which transformations are safe
 - Conservative analysis ⇒ never perform an unsafe optimization, but may miss some safe optimizations.
int sum_upto(int n) {
 int sum = 0;
 while (n > 0) {
 sum += n;
 n--;
 }
 return sum;
}
• Control flow graphs are one of the basic data structures used to represent programs in many program analyses

• Recall: A control flow graph (CFG) for a procedure P is a directed, rooted graph $G = (N, E, r)$ where
 • The nodes are basic blocks of P
 • There is an edge $n_i \rightarrow n_j \in E$ iff n_j may execute immediately after n_i
 • There is a distinguished entry block r where the execution of the procedure begins
Suppose that we have the following language:

\[
\begin{align*}
\langle \text{instr} \rangle & := \langle \text{var} \rangle = \text{add}<\text{opn}>, \langle \text{opn} \rangle \\
& \quad | \langle \text{var} \rangle = \text{mul}<\text{opn}>, \langle \text{opn} \rangle \\
& \quad | \langle \text{var} \rangle = \text{opn} \\
\langle \text{opn} \rangle & := \langle \text{int} \rangle \mid \langle \text{var} \rangle \\
\langle \text{block} \rangle & := \langle \text{instr} \rangle \langle \text{block} \rangle \mid \langle \text{term} \rangle \\
\langle \text{term} \rangle & := \text{blez}<\text{opn}>, \langle \text{label} \rangle, \langle \text{label} \rangle \\
& \quad | \text{return } \langle \text{opn} \rangle \\
\langle \text{program} \rangle & := \langle \text{program} \rangle \langle \text{label} \rangle : \langle \text{block} \rangle \mid \langle \text{block} \rangle
\end{align*}
\]

Note: no uids, no SSA

- We'll take a look at how SSA affects program analysis later
Constant propagation

• The goal of constant propagation: determine at each instruction I a constant environment \mathcal{E}
 • A constant environment is a symbol table mapping each variable x to one of:
 • an integer n (indicating that x's value is n whenever the program is at I)
 • \top (indicating that x might take more than one value at I)
 • \bot (indicating that x may take no values at run-time – I is unreachable)

• Motivation: can evaluate expressions at compile time to save on run time

\begin{align*}
x &= \text{add} \ 1, \ 2 \\
y &= \text{mul} \ x, \ 11 \\
z &= \text{add} \ x, \ y
\end{align*}
The goal of constant propagation: determine at each instruction I a constant environment

A constant environment is a symbol table mapping each variable x to one of:

- an integer n (indicating that x’s value is n whenever the program is at I)
- \top (indicating that x might take more than one value at I)
- \bot (indicating that x may take no values at run-time – I is unreachable)

Motivation: can evaluate expressions at compile time to save on run time

$$\{x \mapsto \top, y \mapsto \top, z \mapsto \top\}$$

$x = \text{add 1, 2}$
$y = \text{mul } x, 11$
$z = \text{add } x, y$
The goal of constant propagation: determine at each instruction I a constant environment

- A constant environment is a symbol table mapping each variable x to one of:
 - an integer n (indicating that x's value is n whenever the program is at I)
 - \top (indicating that x might take more than one value at I)
 - \bot (indicating that x may take no values at run-time – I is unreachable)

Motivation: can evaluate expressions at compile time to save on run time

$$\{x \mapsto T, y \mapsto T, z \mapsto T\}$$

$$\{x \mapsto 3, y \mapsto T, z \mapsto T\}$$

$x = \text{add } 1, 2$

$y = \text{mul } x, 11$

$z = \text{add } x, y$
Constant propagation

• The goal of constant propagation: determine at each instruction I a constant environment
 • A constant environment is a symbol table mapping each variable x to one of:
 • an integer n (indicating that x's value is n whenever the program is at I)
 • \top (indicating that x might take more than one value at I)
 • \perp (indicating that x may take no values at run-time – I is unreachable)
 • Motivation: can evaluate expressions at compile time to save on run time

\begin{align*}
\begin{align*}
\{x \mapsto \top, y \mapsto \top, z \mapsto \top\} \quad & \quad \text{x = add 1, 2} \\
\{x \mapsto 3, y \mapsto \top, z \mapsto \top\} \quad & \quad \text{y = mul x, 11} \\
\{x \mapsto 3, y \mapsto 33, z \mapsto \top\} \quad & \quad \text{z = add x, y}
\end{align*}
\end{align*}
Constant propagation

- The goal of constant propagation: determine at each instruction I a constant environment A
 - A constant environment is a symbol table mapping each variable x to one of:
 - an integer n (indicating that x’s value is n whenever the program is at I)
 - \top (indicating that x might take more than one value at I)
 - \bot (indicating that x may take no values at run-time – I is unreachable)

- Motivation: can evaluate expressions at compile time to save on run time

\[
\begin{align*}
\{x \mapsto T, y \mapsto T, z \mapsto T\} \\
\{x \mapsto 3, y \mapsto T, z \mapsto T\} \\
\{x \mapsto 3, y \mapsto 33, z \mapsto T\}
\end{align*}
\]

\[
\begin{align*}
x &= 3 \\
y &= \text{mul } x, 11 \\
z &= \text{add } x, y
\end{align*}
\]
Constant propagation

- The goal of constant propagation: determine at each instruction I a *constant environment*
 - A *constant environment* is a symbol table mapping each variable x to one of:
 - an integer n (indicating that x's value is n whenever the program is at I)
 - \top (indicating that x might take more than one value at I)
 - \bot (indicating that x may take no values at run-time – I is unreachable)
- Motivation: can evaluate expressions at compile time to save on run time

\[
\begin{align*}
{x \mapsto T, y \mapsto T, z \mapsto T} \\
{x \mapsto 3, y \mapsto T, z \mapsto T} \\
{x \mapsto 3, y \mapsto 33, z \mapsto T}
\end{align*}
\]

\[
\begin{align*}
x & = 3 \\
y & = 33 \\
z & = \text{add } x, y
\end{align*}
\]
The goal of constant propagation: determine at each instruction I a constant environment

A constant environment is a symbol table mapping each variable x to one of:

- an integer n (indicating that x's value is n whenever the program is at I)
- \top (indicating that x might take more than one value at I)
- \bot (indicating that x may take no values at run-time – I is unreachable)

Motivation: can evaluate expressions at compile time to save on run time

\[
\begin{align*}
\{ x \mapsto T, y \mapsto T, z \mapsto T \} \\
\{ x \mapsto 3, y \mapsto T, z \mapsto T \} \quad x = 3 \\
\{ x \mapsto 3, y \mapsto 33, z \mapsto T \} \quad y = 33 \\
\end{align*}
\]
Propagating constants through instructions

- Goal: given a constant environment C and an instruction
 - $x = \text{add } opn_1, opn_2$
 - $x = \text{mul } opn_1, opn_2$
 - $x = opn$

Assuming that constant environment C holds before the instruction, what is the constant environment after the instruction?
Propagating constants through instructions

- Goal: given a constant environment C and an instruction
 - $x = \text{add } opn_1, opn_2$
 - $x = \text{mul } opn_1, opn_2$
 - $x = opn$

Assuming that constant environment C holds before the instruction, what is the constant environment after the instruction?

- Define an evaluator for operands:

$$eval(opn, C) = \begin{cases} C(opn) & \text{if opn is a variable} \\ opn & \text{if opn is an int} \end{cases}$$
Propagating constants through instructions

- **Goal:** given a constant environment C and an instruction
 - $x = \text{add } opn_1, opn_2$
 - $x = \text{mul } opn_1, opn_2$
 - $x = opn$

 Assuming that constant environment C holds *before* the instruction, what is the constant environment *after* the instruction?

- Define an evaluator for operands:
 $$\text{eval}(opn, C) = \begin{cases}
 C(opn) & \text{if opn is a variable} \\
 \text{opn} & \text{if opn is an int}
 \end{cases}$$

- Define an evaluator for instructions:
 $$\text{post}(\text{instr}, C) = \begin{cases}
 \bot & \text{if } C \text{ is } \bot \\
 C[x \mapsto \text{eval}(opn, C)] & \text{if instr is } x = \text{opn} \\
 C[x \mapsto \top] & \text{if } \text{eval}(opn_1, C) = \top \lor \text{eval}(opn_2, C) = \top \\
 C[x \mapsto \text{eval}(opn_1, C) + \text{eval}(opn_2, C)] & \text{if instr is } x = \text{add } opn_1, opn_2 \\
 C[x \mapsto \text{eval}(opn_1, C) \times \text{eval}(opn_2, C)] & \text{if instr is } x = \text{mul } opn_1, opn_2
 \end{cases}$$
Propagating constants through basic blocks

• How do we propagate a constant environment through a basic block?
Propagating constants through basic blocks

- How do we propagate a constant environment through a basic block?
- Block takes the form $\text{instr}_1, \ldots, \text{instr}_n, \text{term}$.

 take $\text{post}(\text{block}, C) = \text{post}(\text{instr}_n, \ldots \text{post}(\text{instr}_1, C) \ldots)$
Propagating constants across edges

- If a block has exactly one predecessor: constant environment at entry is constant environment at exit of predecessor
Propagating constants across edges

- If a block has exactly one predecessor: constant environment at entry is constant environment at exit of predecessor
- If a block has multiple predecessors, must combine constant environments of both:

\[
\bigcup e \equiv \begin{cases} e_1 & \text{if } e_1 = e_2 \\ \top & \text{otherwise} \end{cases}
\]

\[
\left(e_1 \bigcup e_2 \right)(x) = \begin{cases} e_1(x) & \text{if } e_1(x) = e_2(x) \\ \top & \text{otherwise} \end{cases}
\]

\[
\begin{align*}
x &= 0 \\
y &= x+1 \\
z &= y+2 \\
br \ tgt
\end{align*}
\]

\[
\begin{align*}
x &= 0 \\
y &= 0 \\
\text{br tgt}
\end{align*}
\]

\[
\begin{cases} x \mapsto 0, y \mapsto 1, z \mapsto 3 \end{cases}
\]

\[
\begin{cases} x \mapsto 0, y \mapsto 0, z \mapsto \top \end{cases}
\]
Propagating constants across edges

- If a block has exactly one predecessor: constant environment at entry is constant environment at exit of predecessor
- If a block has multiple predecessors, must combine constant environments of both:

\[
\begin{align*}
\text{Merge operator } &\⊔ \text{ defined as:} \\
&\quad e \⊔ \bot = \bot \⊔ e \\
&\quad (e_1 \⊔ e_2)(x) = \\
&\quad \begin{cases} \\
&\quad e_1(x) \text{ if } e_1(x) = e_2(x) \\
&\quad \top \text{ otherwise}
\end{cases}
\end{align*}
\]

\[
\begin{align*}
x = 0 \\
y = x+1 \\
z = y+2 \\
br\ tgt
\end{align*}
\]

\[
\begin{align*}
x = 0 \\
y = 0 \\
br\ tgt
\end{align*}
\]
Propagating constants across edges

- If a block has exactly one predecessor: constant environment at entry is constant environment at exit of predecessor
- If a block has multiple predecessors, must combine constant environments of both:
 - Merge operator \(\sqcup \) defined as:
 - \(e \sqcup \bot = \bot \sqcup e = e \)
 - \((e_1 \sqcup e_2)(x) = \begin{cases} e_1(x) & \text{if } e_1(x) = e_2(x) \\ \top & \text{otherwise} \end{cases} \)

\[
\begin{align*}
&x = 0 \\
y = x+1 \\
z = y+2 \\
br \ tgt \\
\end{align*}
\]

\[
\begin{align*}
&x = 0 \\
y = 0 \\
br \ tgt
\end{align*}
\]
Propagating constants through control flow graphs

• For *acyclic graphs*:
Propagating constants through control flow graphs

- For acyclic graphs: topologically sort basic blocks, propagate constant environments forward
 - Constant environment for entry node maps each variable to \top
Propagating constants through control flow graphs

- For acyclic graphs: topologically sort basic blocks, propagate constant environments forward
 - Constant environment for entry node maps each variable to \top
- What about loops?
• Recall: a partial order \(\sqsubseteq \) is a binary relation that is
 • Reflexive: \(a \sqsubseteq a \)
 • Transitive: \(a \sqsubseteq b \) and \(b \sqsubseteq c \) implies \(a \sqsubseteq c \)
 • Antisymmetric: \(a \sqsubseteq b \) and \(b \sqsubseteq a \) implies \(a = b \)
• Examples: the subset relation, the divisibility relation on the naturals, ...
• Recall: a partial order \(\sqsubseteq \) is a binary relation that is
 • Reflexive: \(a \sqsubseteq a \)
 • Transitive: \(a \sqsubseteq b \) and \(b \sqsubseteq c \) implies \(a \sqsubseteq c \)
 • Antisymmetric: \(a \sqsubseteq b \) and \(b \sqsubseteq a \) implies \(a = b \)
• Examples: the subset relation, the divisibility relation on the naturals, ...
• Place a partial order on \(\mathbb{Z} \cup \{\bot, \top\} \): \(\bot \sqsubseteq n \sqsubseteq \top \) (most information to least information)
Recall: a partial order \sqsubseteq is a binary relation that is

- Reflexive: $a \sqsubseteq a$
- Transitive: $a \sqsubseteq b$ and $b \sqsubseteq c$ implies $a \sqsubseteq c$
- Antisymmetric: $a \sqsubseteq b$ and $b \sqsubseteq a$ implies $a = b$

Examples: the subset relation, the divisibility relation on the naturals, ...

Place a partial order on $\mathbb{Z} \cup \{\bot, \top\}$: $\bot \sqsubseteq n \sqsubseteq \top$ (most information to least information)

Lift the ordering to constant environments: $f \sqsubseteq g$ iff $f(x) \sqsubseteq g(x)$ for all x

- $f \sqsubseteq g$: f is a “better” constant environment than g
- f sends x to \top implies g sends x to \top

The merge operation \sqcup is the least upper bound in this order:

- $f_1 \sqsubseteq (f_1 \sqcup f_2)$ and $f_2 \sqsubseteq (f_1 \sqcup f_2)$
- For any f' such that $f_1 \sqsubseteq f'$ and $f_2 \sqsubseteq f'$, we have $(f_1 \sqcup f_2) \sqsubseteq f'$
Recall: a partial order \sqsubseteq is a binary relation that is
- Reflexive: $a \sqsubseteq a$
- Transitive: $a \sqsubseteq b$ and $b \sqsubseteq c$ implies $a \sqsubseteq c$
- Antisymmetric: $a \sqsubseteq b$ and $b \sqsubseteq a$ implies $a = b$

Examples: the subset relation, the divisibility relation on the naturals, ...

Place a partial order on $\mathbb{Z} \cup \{\bot, \top\}$: $\bot \sqsubseteq n \sqsubseteq \top$ (most information to least information)

Lift the ordering to constant environments: $f \sqsubseteq g$ iff $f(x) \sqsubseteq g(x)$ for all x
- $f \sqsubseteq g$: f is a “better” constant environment than g
- f sends x to \top implies g sends x to \top

The merge operation \sqcup is the least upper bound in this order:
- $f_1 \sqsubseteq (f_1 \sqcup f_2)$ and $f_2 \sqsubseteq (f_1 \sqcup f_2)$
- For any f' such that $f_1 \sqsubseteq f'$ and $f_2 \sqsubseteq f'$, we have $(f_1 \sqcup f_2) \sqsubseteq f'$
Constant propagation as a constraint system

- Let $G = (N, E, s)$ be a control flow graph.
- For each basic block $bb \in N$, associate two constant environments $\text{IN}[bb]$ and $\text{OUT}[bb]$
 - $\text{IN}[bb]$ is the constant environment at the entry of bb
 - $\text{OUT}[bb]$ is the constant environment at the exit of bb

- Fact: if IN, OUT is conservative, then
 - If $\text{IN}[bb](x) = n$, then whenever program execution reaches bb entry, the value of x is n
 - If $\text{IN}[bb](x) = \bot$, then program execution cannot reach bb
 - Similarly for OUT
Constant propagation as a constraint system

- Let \(G = (N, E, s) \) be a control flow graph.
- For each basic block \(bb \in N \), associate two constant environments \(\text{IN}[bb] \) and \(\text{OUT}[bb] \)
 - \(\text{IN}[bb] \) is the constant environment at the entry of \(bb \)
 - \(\text{OUT}[bb] \) is the constant environment at the exit of \(bb \)
- Say that the assignment \(\text{IN}, \text{OUT} \) is conservative if
 1. \(\text{IN}[s] \) assigns each variable \(\top \)
 2. For each node \(bb \in N \), \(\text{OUT}[bb] \sqsubseteq \text{post}(bb, \text{IN}[bb]) \)
 3. For each edge \(src \rightarrow dst \in E \), \(\text{IN}[dst] \sqsubseteq \text{OUT}[src] \)
Let $G = (N, E, s)$ be a control flow graph.

For each basic block $bb \in N$, associate two constant environments $\text{IN}[bb]$ and $\text{OUT}[bb]$

- $\text{IN}[bb]$ is the constant environment at the entry of bb
- $\text{OUT}[bb]$ is the constant environment at the exit of bb

Say that the assignment IN, OUT is conservative if

1. $\text{IN}[s]$ assigns each variable \top
2. For each node $bb \in N$,
 \[\text{OUT}[bb] \sqsupseteq \text{post}(bb, \text{IN}[bb]) \]
3. For each edge $src \rightarrow dst \in E$,
 \[\text{IN}[dst] \sqsupseteq \text{OUT}[src] \]

Fact: if IN, OUT is conservative, then

- If $\text{IN}[bb](x) = n$, then whenever program execution reaches bb entry, the value of x is n
- If $\text{IN}[bb](x) = \bot$, then program execution cannot reach bb
- Similarly for OUT
• Think of IN[bb] and OUT[bb] as variables in a constraint system.
• The constraints may have multiple solutions
 • Recall: when constant environment sends a variables x to a constant (not \top), can replace reads to x with that constant
 • More constant assignments \Rightarrow more optimization
• Think of \text{IN}[ext{bb}] and \text{OUT}[ext{bb}] as variables in a constraint system.
• The constraints may have multiple solutions
 • Recall: when constant environment sends a variables \(x \) to a constant (not \(\top \)), can replace reads to \(x \) with that constant
 • More constant assignments \(\Rightarrow \) more optimization
• Want \textit{least} conservative assignment
 1 \(\text{IN}, \text{OUT} \) is conservative
 2 \(\text{If IN'}, \text{OUT'} \) is a conservative assignment, then for any \(\text{bb} \) we have
 • \(\text{IN}[ext{bb}] \subseteq \text{IN'}[ext{bb}] \)
 • \(\text{OUT}[ext{bb}] \subseteq \text{OUT'}[ext{bb}] \)
Computing the least conservative assignment of constant environments

- Initialize $\text{IN}[s]$ to the constant environment that sends every variable to \top and $\text{OUT}[s]$ to the constant environment that sends every variable to \bot.
- Initialize $\text{IN}[bb]$ and $\text{OUT}[bb]$ to the constant environment that sends every variable to \bot for every other basic block.
Computing the least conservative assignment of constant environments

- Initialize $\text{IN}[s]$ to the constant environment that sends every variable to \top and $\text{OUT}[s]$ to the constant environment that sends every variable to \bot.
- Initialize $\text{IN}[bb]$ and $\text{OUT}[bb]$ to the constant environment that sends every variable to \bot for every other basic block.
- Choose a constraint that is not satisfied by IN, OUT
 - If there is basic block bb with $\text{OUT}[bb] \not\supseteq \text{post}(bb, \text{IN}[bb])$, then set
 \[\text{OUT}[bb] := \text{post}(bb, \text{IN}[bb]) \]
 - If there is an edge $src \to dst \in E$ with $\text{IN}[dst] \not\supseteq \text{OUT}[src]$, then set
 \[\text{IN}[dst] := \text{IN}[dst] \sqcup \text{OUT}[src] \]
- Terminate when all constraints are satisfied.
Computing the least conservative assignment of constant environments

- Initialize $\text{IN}[s]$ to the constant environment that sends every variable to \top and $\text{OUT}[s]$ to the constant environment that sends every variable to \bot.
- Initialize $\text{IN}[bb]$ and $\text{OUT}[bb]$ to the constant environment that sends every variable to \bot for every other basic block.
- Choose a constraint that is not satisfied by IN, OUT
 - If there is basic block bb with $\text{OUT}[bb] \not\supseteq \text{post}(bb, \text{IN}[bb])$, then set
 \[
 \text{OUT}[bb] := \text{post}(bb, \text{IN}[bb])
 \]
 - If there is an edge $src \rightarrow dst \in E$ with $\text{IN}[dst] \not\supseteq \text{OUT}[src]$, then set
 \[
 \text{IN}[dst] := \text{IN}[dst] \cup \text{OUT}[src]
 \]
- Terminate when all constraints are satisfied.
- *This algorithm always converges on the least conservative assignment of constant environments*
Next week: dataflow analysis

- Framework for conservative analysis of program behavior
- *Worklist algorithm*: general algorithm for solving dataflow analysis problems