
COS320: Compiling Techniques

Zak Kincaid

April 11, 2022



Logistics

• Reminder: HW4 is due today
• HW5 released today. You will implement:

• The worklist algorithm for dataflow analysis
• Constant propagation
• Alias analysis & dead code elimination
• Register allocation



Loop transformations



Loops

• Almost all execution time is inside loops
• Many optimizations are centered around transforming loops

• Loop invariant code motion: hoist expressions out of loops to avoid re-computation
• Strength reduction: replace a costly operation inside a loop with a cheaper one
• Loop unrolling: avoid branching by excecuting several iterations of a loop
• Lots more: parallelization, tiling, vectorization, ...



What is a loop?

• We’re after a graph-theoretic definition of a loop
• Typically no explicit loop syntax at the IR level
• Not sensitive to syntax of source language (loops can be created with while, for, goto, ...)

• First attempt: strongly connected components (SCCs)
• Not fine enough – nested loops have only one SCC, but we want to transform them

separately
• Too general – makes it difficult to apply transformations

• Desiderata:
• Want to at least capture loops that would result from structured programming (programs built

with while, if, and sequencing (no goto!))
• Many loop optimizations require inserting code immediately before the loop enters, so loop

definition should make that easy



What is a loop?

• We’re after a graph-theoretic definition of a loop
• Typically no explicit loop syntax at the IR level
• Not sensitive to syntax of source language (loops can be created with while, for, goto, ...)

• First attempt: strongly connected components (SCCs)
• Not fine enough – nested loops have only one SCC, but we want to transform them

separately
• Too general – makes it difficult to apply transformations

• Desiderata:
• Want to at least capture loops that would result from structured programming (programs built

with while, if, and sequencing (no goto!))
• Many loop optimizations require inserting code immediately before the loop enters, so loop

definition should make that easy



What is a loop?

• We’re after a graph-theoretic definition of a loop
• Typically no explicit loop syntax at the IR level
• Not sensitive to syntax of source language (loops can be created with while, for, goto, ...)

• First attempt: strongly connected components (SCCs)
• Not fine enough – nested loops have only one SCC, but we want to transform them

separately
• Too general – makes it difficult to apply transformations

• Desiderata:
• Want to at least capture loops that would result from structured programming (programs built

with while, if, and sequencing (no goto!))
• Many loop optimizations require inserting code immediately before the loop enters, so loop

definition should make that easy



What is a loop?

• A loop of a control flow graph is a set of nodes S such that with a distinguished header
node h such that

1 S is strongly connected
• There is a directed path from h to every node in S
• There is a directed path from any to in S to h

2 There is no edge from any node outside of S to any node inside of S, except for h
• Implies h dominates all nodes in S: every path from entry to a node in S must go through h

• Observe: a loop has one entry, but may have multiple exits (or none)
• A loop entry is a node with some predecessor outside the loop
• A loop exit is a node with some successor outside the loop



What is a loop?

• A loop of a control flow graph is a set of nodes S such that with a distinguished header
node h such that

1 S is strongly connected
• There is a directed path from h to every node in S
• There is a directed path from any to in S to h

2 There is no edge from any node outside of S to any node inside of S, except for h
• Implies h dominates all nodes in S: every path from entry to a node in S must go through h

• Observe: a loop has one entry, but may have multiple exits (or none)
• A loop entry is a node with some predecessor outside the loop
• A loop exit is a node with some successor outside the loop



a

b

c d

ef



a

b

c d

ef



a

b

c d

ef



a

b

c d

ef



a

b

c

d

e



a

b

c

d

e



Strongly connected subgraph

a

b

c d

e f

a
Dominator tree

b

c d

f

e



Strongly connected subgraph

a

b

c d

e f

a
Dominator tree

b

c d

f

e



Identifying loops

• A back edge is an edge u → v such that v dominates u

• The natural loop of a back edge u → v is the set of nodes n such that v dominates n and
there is a path from n to u not containing v.

• The natural loop of a back edge can be computed with a DFS on the reversal of the CFG,
starting from u

a

b

c d

ef



Identifying loops

• A back edge is an edge u → v such that v dominates u
• The natural loop of a back edge u → v is the set of nodes n such that v dominates n and

there is a path from n to u not containing v.

• The natural loop of a back edge can be computed with a DFS on the reversal of the CFG,
starting from u

a

b

c d

ef



Identifying loops

• A back edge is an edge u → v such that v dominates u
• The natural loop of a back edge u → v is the set of nodes n such that v dominates n and

there is a path from n to u not containing v.
• The natural loop of a back edge can be computed with a DFS on the reversal of the CFG,

starting from u

a

b

c d

ef



Identifying loops

• A back edge is an edge u → v such that v dominates u
• The natural loop of a back edge u → v is the set of nodes n such that v dominates n and

there is a path from n to u not containing v.
• The natural loop of a back edge can be computed with a DFS on the reversal of the CFG,

starting from u

a

b

c d

ef



Identifying loops

• A back edge is an edge u → v such that v dominates u
• The natural loop of a back edge u → v is the set of nodes n such that v dominates n and

there is a path from n to u not containing v.
• The natural loop of a back edge can be computed with a DFS on the reversal of the CFG,

starting from u

a

b

c d

ef



Identifying loops

• A back edge is an edge u → v such that v dominates u
• The natural loop of a back edge u → v is the set of nodes n such that v dominates n and

there is a path from n to u not containing v.
• The natural loop of a back edge can be computed with a DFS on the reversal of the CFG,

starting from u

a

b

c d

ef



Every natural loop is a loop:

1 Strongly connected
• By DFS construction every node has a path to u (that doesn’t pass through v)
• Every node has a path from v (path from entry to node to u must include v)

2 Single entry v
• By DFS construction, all predecessors of any node except v belong to the loop

But not every loop is natural:

a

b

c d



Every natural loop is a loop:
1 Strongly connected

• By DFS construction every node has a path to u (that doesn’t pass through v)
• Every node has a path from v (path from entry to node to u must include v)

2 Single entry v
• By DFS construction, all predecessors of any node except v belong to the loop

But not every loop is natural:

a

b

c d



Every natural loop is a loop:
1 Strongly connected

• By DFS construction every node has a path to u (that doesn’t pass through v)
• Every node has a path from v (path from entry to node to u must include v)

2 Single entry v

• By DFS construction, all predecessors of any node except v belong to the loop

But not every loop is natural:

a

b

c d



Every natural loop is a loop:
1 Strongly connected

• By DFS construction every node has a path to u (that doesn’t pass through v)
• Every node has a path from v (path from entry to node to u must include v)

2 Single entry v
• By DFS construction, all predecessors of any node except v belong to the loop

But not every loop is natural:

a

b

c d



Every natural loop is a loop:
1 Strongly connected

• By DFS construction every node has a path to u (that doesn’t pass through v)
• Every node has a path from v (path from entry to node to u must include v)

2 Single entry v
• By DFS construction, all predecessors of any node except v belong to the loop

But not every loop is natural:

a

b

c d



Nested loops

• Say that a loop B is nested within A if B ⊆ A
• A node can be the header of more than one natural loop.

• Neither is nested inside the other

• Commonly, we resolve this issue by merging natural loops with the same header
• Loops obtained by merging natural loops with the same header are either disjoint or nested
• Loops can be organized into a forest

• We typically apply loop transformations “bottom-up”, starting with innermost loops



Nested loops

• Say that a loop B is nested within A if B ⊆ A
• A node can be the header of more than one natural loop.

• Neither is nested inside the other
• Commonly, we resolve this issue by merging natural loops with the same header

• Loops obtained by merging natural loops with the same header are either disjoint or nested
• Loops can be organized into a forest

• We typically apply loop transformations “bottom-up”, starting with innermost loops



Nested loops

• Say that a loop B is nested within A if B ⊆ A
• A node can be the header of more than one natural loop.

• Neither is nested inside the other
• Commonly, we resolve this issue by merging natural loops with the same header

• Loops obtained by merging natural loops with the same header are either disjoint or nested
• Loops can be organized into a forest

• We typically apply loop transformations “bottom-up”, starting with innermost loops



Loop preheaders

• Some optimizations (e.g., loop-invariant code motion) require inserting statements
immediately before a loop executes

• A loop preheader is a basic block that is inserted immediately before the loop header, to
serve as a place to store these statements

h

p1 p2

a

b c

h

ph

p1 p2

a

b c



Loop invariant code motion

• Loop invariant code motion saves the cost of re-computing expressions that are left
invariant (i.e., do not change) in the loop.

• Such computations can be moved the loop’s preheader, as long as they are not side-effecting

• SSA based LICM:
• An operand is invariant in a loop L if

1 It is a constant, or
2 It is a gid, or
3 It is a uid whose definition does not belong to L

• For each computation %x = opn1 op opn2, if opn1 and opn2 are both invariant, move
%x = opn1 op opn2 to pre-header

• This moves definition of %x outside of the loop, so %x is now invariant



Loop invariant code motion

• Loop invariant code motion saves the cost of re-computing expressions that are left
invariant (i.e., do not change) in the loop.

• Such computations can be moved the loop’s preheader, as long as they are not side-effecting
• SSA based LICM:

• An operand is invariant in a loop L if
1 It is a constant, or
2 It is a gid, or
3 It is a uid whose definition does not belong to L

• For each computation %x = opn1 op opn2, if opn1 and opn2 are both invariant, move
%x = opn1 op opn2 to pre-header

• This moves definition of %x outside of the loop, so %x is now invariant



Loop invariant code motion

• Loop invariant code motion saves the cost of re-computing expressions that are left
invariant (i.e., do not change) in the loop.

• Such computations can be moved the loop’s preheader, as long as they are not side-effecting
• SSA based LICM:

• An operand is invariant in a loop L if
1 It is a constant, or
2 It is a gid, or
3 It is a uid whose definition does not belong to L

• For each computation %x = opn1 op opn2, if opn1 and opn2 are both invariant, move
%x = opn1 op opn2 to pre-header

• This moves definition of %x outside of the loop, so %x is now invariant



Loop invariant code motion

• Loop invariant code motion saves the cost of re-computing expressions that are left
invariant (i.e., do not change) in the loop.

• Such computations can be moved the loop’s preheader, as long as they are not side-effecting
• SSA based LICM:

• An operand is invariant in a loop L if
1 It is a constant, or
2 It is a gid, or
3 It is a uid whose definition does not belong to L

• For each computation %x = opn1 op opn2, if opn1 and opn2 are both invariant, move
%x = opn1 op opn2 to pre-header

• This moves definition of %x outside of the loop, so %x is now invariant



%i0 = 0

br loop

%i1 = ϕ(%i0, %i2)
%t1 = %n * %n
%t2 = %t1 * %n
%t3 = %i1 - %t2

blz %t3, body, exit

%i2 = %i1 + 1

b loop

return %i1

T

F



%i0 = 0

br ph

br loop

%i1 = ϕ(%i0, %i2)
%t1 = %n * %n
%t2 = %t1 * %n
%t3 = %i1 - %t2

blz %t3, body, exit

%i2 = %i1 + 1

b loop

return %i1

T

F



%i0 = 0

br ph

%t1 = %n * %n

br loop

%i1 = ϕ(%i0, %i2)
%t2 = %t1 * %n
%t3 = %i1 - %t2

blz %t3, body, exit

%i2 = %i1 + 1

b loop

return %i1

T

F



%i0 = 0

br ph

%t1 = %n * %n
%t2 = %t1 * %n

br loop

%i1 = ϕ(%i0, %i2)
%t3 = %i1 - %t2

blz %t3, body, exit

%i2 = %i1 + 1

b loop

return %i1

T

F



Induction variables

• An induction variable is a variable %x such that the difference between successive values
of %x in a loop is constant.

• Common example: the loop counter in a for loop
for (int i = 0; i < n; i++)

• Using %x(k) to denote the value of %x in the kth iteration of a loop, there is some constant
∆(%x) such that

%x(k + 1) = %x(k) + ∆(%x)

• Useful for several optimizations
• Strength reduction, loop unrolling, induction variable elimination, parallelization, array

bound-check elision
• A variable %x is an basic induction variable for a loop L if it is increased / decreased by a

fixed loop invariant quantity in any iteration of the loop.
• %x(i + 1) = %x(i) + c ⇒∆(%x) = c

• A variable %y is an derived induction variable for a loop L if it is an affine function of a basic
induction variable

• %y(i) = a · %x(i) + b ⇒∆(%y) = a · c



Induction variables

• An induction variable is a variable %x such that the difference between successive values
of %x in a loop is constant.

• Common example: the loop counter in a for loop
for (int i = 0; i < n; i++)

• Using %x(k) to denote the value of %x in the kth iteration of a loop, there is some constant
∆(%x) such that

%x(k + 1) = %x(k) + ∆(%x)
• Useful for several optimizations

• Strength reduction, loop unrolling, induction variable elimination, parallelization, array
bound-check elision

• A variable %x is an basic induction variable for a loop L if it is increased / decreased by a
fixed loop invariant quantity in any iteration of the loop.

• %x(i + 1) = %x(i) + c ⇒∆(%x) = c
• A variable %y is an derived induction variable for a loop L if it is an affine function of a basic

induction variable
• %y(i) = a · %x(i) + b ⇒∆(%y) = a · c



Induction variables

• An induction variable is a variable %x such that the difference between successive values
of %x in a loop is constant.

• Common example: the loop counter in a for loop
for (int i = 0; i < n; i++)

• Using %x(k) to denote the value of %x in the kth iteration of a loop, there is some constant
∆(%x) such that

%x(k + 1) = %x(k) + ∆(%x)
• Useful for several optimizations

• Strength reduction, loop unrolling, induction variable elimination, parallelization, array
bound-check elision

• A variable %x is an basic induction variable for a loop L if it is increased / decreased by a
fixed loop invariant quantity in any iteration of the loop.

• %x(i + 1) = %x(i) + c ⇒∆(%x) = c

• A variable %y is an derived induction variable for a loop L if it is an affine function of a basic
induction variable

• %y(i) = a · %x(i) + b ⇒∆(%y) = a · c



Induction variables

• An induction variable is a variable %x such that the difference between successive values
of %x in a loop is constant.

• Common example: the loop counter in a for loop
for (int i = 0; i < n; i++)

• Using %x(k) to denote the value of %x in the kth iteration of a loop, there is some constant
∆(%x) such that

%x(k + 1) = %x(k) + ∆(%x)
• Useful for several optimizations

• Strength reduction, loop unrolling, induction variable elimination, parallelization, array
bound-check elision

• A variable %x is an basic induction variable for a loop L if it is increased / decreased by a
fixed loop invariant quantity in any iteration of the loop.

• %x(i + 1) = %x(i) + c ⇒∆(%x) = c
• A variable %y is an derived induction variable for a loop L if it is an affine function of a basic

induction variable
• %y(i) = a · %x(i) + b ⇒∆(%y) = a · c



Finding induction variables

• Basic induction variable detection:
• Look for ϕ statements %x = ϕ(%x1, ...,%xn) in header

• Each position %xi corresponding to a back edge of the loop must be the same uid, say %xk

• Find chain of assignments for %xk leading back to %x, such that each either adds or subtracts
an invariant quantity. Success ⇒ %x is an basic induction var.

• To detect derived induction variables:
• Choose a basic induction variable %x
• Find assignments of the form %y = opn1 op opn2 where

• op is + or − and opn1 and opn2 are either %x, derived induction variables of %x, or loop invariant
quantities

• op is ∗ and opn1 and opn2 are as above, and at least one is a loop invariant quantity



Finding induction variables

• Basic induction variable detection:
• Look for ϕ statements %x = ϕ(%x1, ...,%xn) in header

• Each position %xi corresponding to a back edge of the loop must be the same uid, say %xk

• Find chain of assignments for %xk leading back to %x, such that each either adds or subtracts
an invariant quantity. Success ⇒ %x is an basic induction var.

• To detect derived induction variables:
• Choose a basic induction variable %x
• Find assignments of the form %y = opn1 op opn2 where

• op is + or − and opn1 and opn2 are either %x, derived induction variables of %x, or loop invariant
quantities

• op is ∗ and opn1 and opn2 are as above, and at least one is a loop invariant quantity



Strength reduction

Idea: replace expensive operation with cheaper one (e.g., replace multiplication w/ addition).

long trace (long *m, long n) {
long i;
long result = 0;
for (i = 0; i < n; i++) {

result += *(m + i*n + i);
}
return result;

}

→

long trace (long *m, long n) {
long i;
long result = 0;
long *next = m;
for (i = 0; i < n; i++) {

result += *next;
next += i + 1;

}
return result;

}



%i1 = ϕ(%i0, %i2)
%result1 = ϕ(%result0, %result2)
%t1 = %i1 - %n
blz %t1, body, exit

%t2 = %i1 * %n
%t3 = %m + %t2
%t4 = %t3 + %i1
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop



%i1 = ϕ(%i0, %i2)
%result1 = ϕ(%result0, %result2)
%t1 = %i1 - %n
blz %t1, body, exit

%t2 = %i1 * %n
%t3 = %m + %t2
%t4 = %t3 + %i1
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop



%i1 = ϕ(%i0, %i2) i := i + 1
%result1 = ϕ(%result0, %result2)
%t1 = %i1 - %n
blz %t1, body, exit

%t2 = %i1 * %n
%t3 = %m + %t2
%t4 = %t3 + %i1
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop



%i1 = ϕ(%i0, %i2) i := i + 1
%result1 = ϕ(%result0, %result2)
%t1 = %i1 - %n
blz %t1, body, exit

%t2 = %i1 * %n
%t3 = %m + %t2
%t4 = %t3 + %i1
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop



%i1 = ϕ(%i0, %i2) i := i + 1
%result1 = ϕ(%result0, %result2)
%t1 = %i1 - %n t1 := i + n
blz %t1, body, exit

%t2 = %i1 * %n t2 := n*i
%t3 = %m + %t2
%t4 = %t3 + %i1
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop



%i1 = ϕ(%i0, %i2) i := i + 1
%result1 = ϕ(%result0, %result2)
%t1 = %i1 - %n t1 := i + n
blz %t1, body, exit

%t2 = %i1 * %n t2 := n*i
%t3 = %m + %t2 t3 := n*i + m
%t4 = %t3 + %i1
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop



%i1 = ϕ(%i0, %i2) i := i + 1
%result1 = ϕ(%result0, %result2)
%t1 = %i1 - %n t1 := i + n
blz %t1, body, exit

%t2 = %i1 * %n t2 := n*i
%t3 = %m + %t2 t3 := n*i + m
%t4 = %t3 + %i1 t4 := (n+1)*i + m
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop



%t20 = 0
%t30 = %m
%t40 = %m

%i1 = ϕ(%i0, %i2) i := i + 1
%t21 = ϕ(%t20, %t22)
%t31 = ϕ(%t30, %t32)
%t41 = ϕ(%t40, %t42)
%result1 = ϕ(%result0, %result2)
%t1 = %i1 - %n t1 := i + n
blz %t1, body, exit

%t22 = %t21 + %n t2 := n*i
%t32 = %t31 + %n t3 := n*i + m
%t6 = %t41 + %n
%t42 = %t6 + 1 t4 := (n+1)*i + m
%t5 = load %t42
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop



Loop unrolling

• Some loops are so small that a significant portion of the running time is due to testing the
loop exit condition

• We can avoid branching by executing several iterations of the loop at once
• This optimization trades (potential) run-time performance with code size.



h

x ...

h

x ...

h

x ...

h

x ...

h

x ...

bgz t + 3∆(t), in, out

Conditional branch⇝ unconditional branchRedirect back-edges to next loop copy

Insert epilogue, in case # iterations is not divisible by 4
Copy loop

Single exit: bgz t, in, out
t an ind. var w/ ∆(t) = c ≤ 0



h

x ...

h

x ...

h

x ...

h

x ...

h

x ...

bgz t + 3∆(t), in, out

Conditional branch⇝ unconditional branchRedirect back-edges to next loop copy

Insert epilogue, in case # iterations is not divisible by 4
Copy loop

Single exit: bgz t, in, out
t an ind. var w/ ∆(t) = c ≤ 0



h

x ...

h

x ...

h

x ...

h

x ...

h

x ...

bgz t + 3∆(t), in, out

Conditional branch⇝ unconditional branchRedirect back-edges to next loop copy

Insert epilogue, in case # iterations is not divisible by 4

Copy loop

Single exit: bgz t, in, out
t an ind. var w/ ∆(t) = c ≤ 0



h

x ...

h

x ...

h

x ...

h

x ...

h

x ...

bgz t + 3∆(t), in, out

Conditional branch⇝ unconditional branch

Redirect back-edges to next loop copy

Insert epilogue, in case # iterations is not divisible by 4
Copy loop

Single exit: bgz t, in, out
t an ind. var w/ ∆(t) = c ≤ 0



h

x ...

h

x ...

h

x ...

h

x ...

h

x ...

bgz t + 3∆(t), in, out

Conditional branch⇝ unconditional branch

Redirect back-edges to next loop copy

Insert epilogue, in case # iterations is not divisible by 4
Copy loop

Single exit: bgz t, in, out
t an ind. var w/ ∆(t) = c ≤ 0



h

x ...

h

x ...

h

x ...

h

x ...

h

x ...

bgz t + 3∆(t), in, out

Conditional branch⇝ unconditional branchRedirect back-edges to next loop copy

Insert epilogue, in case # iterations is not divisible by 4

Copy loop

Single exit: bgz t, in, out
t an ind. var w/ ∆(t) = c ≤ 0



Optimization wrap-up

• Optimizer operates as a series of IR-to-IR transformations
• Transformations are typically supported by some analysis that proves the transformation

is safe
• Each transformation is simple
• Transformations are mutually beneficial

• Series of transformations can make drastic changes!


