COS320: Compiling Techniques

Zak Kincaid

April 11, 2022
Logistics

- Reminder: HW4 is due today
- HW5 released today. You will implement:
 - The worklist algorithm for dataflow analysis
 - Constant propagation
 - Alias analysis & dead code elimination
 - Register allocation
Loop transformations
Loops

- Almost all execution time is inside loops
- Many optimizations are centered around transforming loops
 - Loop invariant code motion: hoist expressions out of loops to avoid re-computation
 - Strength reduction: replace a costly operation inside a loop with a cheaper one
 - Loop unrolling: avoid branching by executing several iterations of a loop
 - Lots more: parallelization, tiling, vectorization, ...
What is a loop?

- We're after a *graph-theoretic* definition of a loop
 - Typically no explicit loop syntax at the IR level
 - Not sensitive to syntax of source language (loops can be created with *while*, *for*, *goto*, ...)

- First attempt: strongly connected components (SCCs)
 - Not fine enough – nested loops have only one SCC, but we want to transform them separately
 - Too general – makes it difficult to apply transformations

- Desiderata:
 - Want to at least capture loops that would result from structured programming (programs built with *while*, *if*, and sequencing (no *goto*!))
 - Many loop optimizations require inserting code immediately before the loop enters, so loop definition should make that easy
What is a loop?

- We're after a *graph-theoretic* definition of a loop
 - Typically no explicit loop syntax at the IR level
 - Not sensitive to syntax of source language (loops can be created with `while`, `for`, `goto`, ...)
- First attempt: strongly connected components (SCCs)
 - Not fine enough – nested loops have only one SCC, but we want to transform them separately
 - Too general – makes it difficult to apply transformations
What is a loop?

- We're after a graph-theoretic definition of a loop
 - Typically no explicit loop syntax at the IR level
 - Not sensitive to syntax of source language (loops can be created with while, for, goto, ...)
- First attempt: strongly connected components (SCCs)
 - Not fine enough – nested loops have only one SCC, but we want to transform them separately
 - Too general – makes it difficult to apply transformations
- Desiderata:
 - Want to at least capture loops that would result from structured programming (programs built with while, if, and sequencing (no goto!))
 - Many loop optimizations require inserting code immediately before the loop enters, so loop definition should make that easy
What is a loop?

- A **loop** of a control flow graph is a set of nodes S such that with a distinguished **header** node h such that
 1. S is strongly connected
 - There is a directed path from h to every node in S
 - There is a directed path from any to in S to h
 2. There is no edge from any node *outside* of S to any node *inside* of S, except for h
 - Implies h dominates all nodes in S: every path from entry to a node in S must go through h
What is a loop?

- A **loop** of a control flow graph is a set of nodes S such that with a distinguished *header* node h such that:
 1. S is strongly connected
 - There is a directed path from h to every node in S
 - There is a directed path from any to in S to h
 2. There is no edge from any node outside of S to any node inside of S, except for h
 - Implies h dominates all nodes in S: every path from entry to a node in S must go through h

- Observe: a loop has one entry, but may have multiple exits (or none)
 - A *loop entry* is a node with some predecessor outside the loop
 - A *loop exit* is a node with some successor outside the loop
Strongly connected subgraph

Dominator tree

a

b

c
d

e
f
Identifying loops

- A back edge is an edge $u \rightarrow v$ such that v dominates u.
Identifying loops

- A back edge is an edge $u \rightarrow v$ such that v dominates u
- The natural loop of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v.
Identifying loops

- A back edge is an edge $u \rightarrow v$ such that v dominates u
- The natural loop of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v.
 - The natural loop of a back edge can be computed with a DFS on the reversal of the CFG, starting from u
Identifying loops

- A **back edge** is an edge $u \rightarrow v$ such that v dominates u.
- The **natural loop** of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v.
 - The natural loop of a back edge can be computed with a DFS on the **reversal** of the CFG, starting from u.
Identifying loops

- A **back edge** is an edge $u \rightarrow v$ such that v dominates u.
- The **natural loop** of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v.
 - The natural loop of a back edge can be computed with a DFS on the *reversal* of the CFG, starting from u.

![Diagram of a control flow graph (CFG) with nodes a, b, c, d, e, and f, and edges connecting them, illustrating a back edge and its natural loop.](image-url)
Identifying loops

- A **back edge** is an edge $u \rightarrow v$ such that v dominates u
- The **natural loop** of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v.
 - The natural loop of a back edge can be computed with a DFS on the *reversal* of the CFG, starting from u
Every natural loop is a loop:

1. Strongly connected
 - By DFS construction every node has a path to \(v \) (that doesn't pass through \(u \))
 - Every node has a path from \(v \) (path from entry to node to \(u \) must include \(v \))

2. Single entry \(v \)
 - By DFS construction, all predecessors of any node except \(v \) belong to the loop

But not every loop is natural:
Every natural loop is a loop:

1. **Strongly connected**
 - By DFS construction every node has a path to u (that doesn’t pass through v)
 - Every node has a path from v (path from entry to node to u must include v)
Every natural loop is a loop:

1. **Strongly connected**
 - By DFS construction every node has a path to u (that doesn’t pass through v)
 - Every node has a path from v (path from entry to node to u must include v)

2. **Single entry v**
Every natural loop is a loop:

1. **Strongly connected**
 - By DFS construction every node has a path to \(u \) (that doesn’t pass through \(v \))
 - Every node has a path from \(v \) (path from entry to node to \(u \) must include \(v \))

2. **Single entry** \(v \)
 - By DFS construction, all predecessors of any node except \(v \) belong to the loop
Every natural loop is a loop:

1. **Strongly connected**
 - By DFS construction every node has a path to \(u \) (that doesn’t pass through \(v \))
 - Every node has a path from \(v \) (path from entry to node to \(u \) must include \(v \))

2. **Single entry \(v \)**
 - By DFS construction, all predecessors of any node except \(v \) belong to the loop

But not every loop is natural:
Nested loops

- Say that a loop B is *nested* within A if $B \subseteq A$
- A node can be the header of more than one natural loop.
 - Neither is nested inside the other
Nested loops

- Say that a loop B is *nested* within A if $B \subseteq A$
- A node can be the header of more than one natural loop.
 - Neither is nested inside the other
- Commonly, we resolve this issue by merging natural loops with the same header
 - Loops obtained by merging natural loops with the same header are either disjoint or nested
 - Loops can be organized into a forest
Nested loops

• Say that a loop B is *nested* within A if $B \subseteq A$
• A node can be the header of more than one natural loop.
 • Neither is nested inside the other
• Commonly, we resolve this issue by merging natural loops with the same header
 • Loops obtained by merging natural loops with the same header are either disjoint or nested
 • Loops can be organized into a forest
• We typically apply loop transformations “bottom-up”, starting with innermost loops
Loop preheaders

- Some optimizations (e.g., loop-invariant code motion) require inserting statements immediately before a loop executes.
- A *loop preheader* is a basic block that is inserted immediately before the loop header, to serve as a place to store these statements.
Loop invariant code motion

- Loop invariant code motion saves the cost of re-computing expressions that are left invariant (i.e., do not change) in the loop.
 - Such computations can be moved the loop’s preheader, as long as they are not side-effecting
Loop invariant code motion

- Loop invariant code motion saves the cost of re-computing expressions that are left invariant (i.e., do not change) in the loop.
 - Such computations can be moved the loop’s preheader, as long as they are not side-effecting
- SSA based LICM:
 - An operand is invariant in a loop L if
 1. It is a constant, or
 2. It is a gid, or
 3. It is a uid whose definition does not belong to L
Loop invariant code motion

- Loop invariant code motion saves the cost of re-computing expressions that are left invariant (i.e., do not change) in the loop.
 - Such computations can be moved the loop’s preheader, as long as they are not side-effecting.
- SSA based LICM:
 - An operand is invariant in a loop L if
 1. It is a constant, or
 2. It is a gid, or
 3. It is a uid whose definition does not belong to L
 - For each computation $\%x = opn_1 \ op \ opn_2$, if opn_1 and opn_2 are both invariant, move $\%x = opn_1 \ op \ opn_2$ to pre-header
Loop invariant code motion

- Loop invariant code motion saves the cost of re-computing expressions that are left invariant (i.e., do not change) in the loop.
 - Such computations can be moved the loop's preheader, as long as they are not side-effecting
- SSA based LICM:
 - An operand is invariant in a loop L if
 1. It is a constant, or
 2. It is a gid, or
 3. It is a uid whose definition does not belong to L
 - For each computation $\%x = opn_1 \ op \ opn_2$, if opn_1 and opn_2 are both invariant, move $\%x = opn_1 \ op \ opn_2$ to pre-header
 - This moves definition of $\%x$ outside of the loop, so $\%x$ is now invariant
%i_0 = 0
br loop

%i_1 = \phi(%i_0, %i_2)
%t_1 = %n * %n
%t_2 = %t_1 * %n
%t_3 = %i_1 - %t_2
blz %t_3, body, exit

%i_2 = %i_1 + 1
b loop

return %i_1
%i_0 = 0
br ph

br loop

%i_1 = \phi(%i_0, %i_2)
%t_1 = %n * %n
%t_2 = %t_1 * %n
%t_3 = %i_1 - %t_2
blz %t_3, body, exit

%i_2 = %i_1 + 1
b loop

return %i_1
\[
\begin{align*}
%i_0 &= 0 \\
\text{br ph}
\end{align*}
\]

\[
\begin{align*}
&t_1 = n \times n \\
\text{br loop}
\end{align*}
\]

\[
\begin{align*}
%i_1 &= \phi(%i_0, %i_2) \\
& t_2 = t_1 \times n \\
& t_3 = %i_1 - t_2 \\
\text{blz } t_3, \text{ body, exit}
\end{align*}
\]

\[
\begin{align*}
%i_2 &= %i_1 + 1 \\
\text{b loop}
\end{align*}
\]

return %i_1
%i₀ = 0

br ph

%t₁ = %n * %n
%t₂ = %t₁ * %n

br loop

%i₁ = φ(%i₀, %i₂)
%t₃ = %i₁ - %t₂
blz %t₃, body, exit

%i₂ = %i₁ + 1
b loop

return %i₁
Induction variables

• An *induction variable* is a variable $\%_0 x$ such that the difference between successive values of $\%_0 x$ in a loop is constant.

 • Common example: the loop counter in a for loop

    ```java
    for (int i = 0; i < n; i++)
    ```

 • Using $\%_0 x(k)$ to denote the value of $\%_0 x$ in the kth iteration of a loop, there is some constant $\Delta(\%_0 x)$ such that

 $$\%_0 x(k + 1) = \%_0 x(k) + \Delta(\%_0 x)$$
Induction variables

• An *induction variable* is a variable $\%_0 x$ such that the difference between successive values of $\%_0 x$ in a loop is constant.
 - Common example: the loop counter in a `for` loop
    ```c
    for (int i = 0; i < n; i++)
    ```
 - Using $\%_0 x(k)$ to denote the value of $\%_0 x$ in the kth iteration of a loop, there is some constant $\Delta(\%_0 x)$ such that
 $$\%_0 x(k + 1) = \%_0 x(k) + \Delta(\%_0 x)$$

• Useful for several optimizations
 - Strength reduction, loop unrolling, induction variable elimination, parallelization, array bound-check elision
Induction variables

- An *induction variable* is a variable $\%x$ such that the difference between successive values of $\%x$ in a loop is constant.
 - Common example: the loop counter in a for loop
    ```
    for (int i = 0; i < n; i++)
    ```
 - Using $\%x(k)$ to denote the value of $\%x$ in the kth iteration of a loop, there is some constant $\Delta(\%x)$ such that
 \[\%x(k+1) = \%x(k) + \Delta(\%x) \]

- Useful for several optimizations
 - Strength reduction, loop unrolling, induction variable elimination, parallelization, array bound-check elision

- A variable $\%x$ is an *basic induction variable* for a loop L if it is increased / decreased by a fixed loop invariant quantity in any iteration of the loop.
 - $\%x(i+1) = \%x(i) + c \Rightarrow \Delta(\%x) = c$
Induction variables

- An *induction variable* is a variable `%x` such that the difference between successive values of `%x` in a loop is constant.
 - Common example: the loop counter in a `for` loop
    ```
    for (int i = 0; i < n; i++)
    ```
 - Using `%x(k)` to denote the value of `%x` in the `k`th iteration of a loop, there is some constant `\(\Delta(%x) \)` such that
 \[
 %x(k + 1) = %x(k) + \Delta(%x)
 \]

- Useful for several optimizations
 - Strength reduction, loop unrolling, induction variable elimination, parallelization, array bound-check elision

- A variable `%x` is an *basic induction variable* for a loop `L` if it is increased / decreased by a fixed loop invariant quantity in any iteration of the loop.
 - \(%x(i + 1) = %x(i) + c \) \(\Rightarrow \) \(\Delta(%x) = c \)

- A variable `%y` is an *derived induction variable* for a loop `L` if it is an affine function of a basic induction variable
 - \(%y(i) = a \cdot %x(i) + b \) \(\Rightarrow \) \(\Delta(%y) = a \cdot c \)
Finding induction variables

- Basic induction variable detection:
 - Look for ϕ statements $%x = \phi(%x_1, \ldots, %x_n)$ in header
 - Each position $%x_i$ corresponding to a back edge of the loop must be the same uid, say $%x_k$
 - Find chain of assignments for $%x_k$ leading back to $%x$, such that each either adds or subtracts an invariant quantity. Success $\Rightarrow %x$ is an basic induction var.

- To detect derived induction variables:
 - Choose a basic induction variable $%x$
 - Find assignments of the form $%y = \text{opn}_1 \text{op} \text{opn}_2$ where
 - op is $+$ or $-$ and opn_1 and opn_2 are either $%x$, derived induction variables of $%x$, or loop invariant quantities
 - op is \ast and opn_1 and opn_2 are as above, and at least one is a loop invariant quantity
Finding induction variables

- Basic induction variable detection:
 - Look for ϕ statements $%x = \phi(%x_1, \ldots, %x_n)$ in header
 - Each position $%x_i$ corresponding to a back edge of the loop must be the same uid, say $%x_k$
 - Find chain of assignments for $%x_k$ leading back to $%x$, such that each either adds or subtracts an invariant quantity. Success $\Rightarrow %x$ is an basic induction var.

- To detect derived induction variables:
 - Choose a basic induction variable $%x$
 - Find assignments of the form $%y = opn_1 \ op \ opn_2$ where
 - op is $+$ or $-$ and opn_1 and opn_2 are either $%x$, derived induction variables of $%x$, or loop invariant quantities
 - op is \ast and opn_1 and opn_2 are as above, and at least one is a loop invariant quantity
Strength reduction

Idea: replace expensive operation with cheaper one (e.g., replace multiplication w/ addition).

```c
long trace (long *m, long n) {
    long i;
    long result = 0;
    for (i = 0; i < n; i++) {
        result += *(m + i*n + i);
    }
    return result;
}
```

→

```c
long trace (long *m, long n) {
    long i;
    long result = 0;
    long *next = m;
    for (i = 0; i < n; i++) {
        result += *next;
        next += i + 1;
    }
    return result;
}
```
\[
\%i_1 = \phi(\%i_0, \%i_2)
\]
\[
\%result_1 = \phi(\%result_0, \%result_2)
\]
\[
\%t1 = \%i_1 - \%n
\]
\[
\text{blz} \ %t1, \text{ body, exit}
\]

\[
\%t2 = \%i_1 \times \%n
\]
\[
\%t3 = \%m + \%t2
\]
\[
\%t4 = \%t3 + \%i_1
\]
\[
\%t5 = \text{load} \ %t4
\]
\[
\%result_2 = \%result_1 + \%t5
\]
\[
\%i_2 = \%i_1 + 1
\]
\[
\text{b loop}
\]
%i_1 = \phi(%i_0, %i_2)
%result_1 = \phi(%result_0, %result_2)
%t1 = %i_1 - %n
blz %t1, body, exit

%t2 = %i_1 * %n
%t3 = %m + %t2
%t4 = %t3 + %i_1
%t5 = load %t4
%result_2 = %result_1 + %t5
%i_2 = %i_1 + 1
b loop
%i_1 = \phi(%i_0, %i_2) \quad i := i + 1

%result_1 = \phi(%result_0, %result_2)

%t1 = %i_1 - %n

blz %t1, body, exit

%t2 = %i_1 \times %n

%t3 = %m + %t2

%t4 = %t3 + %i_1

%t5 = load %t4

%result_2 = %result_1 + %t5

%i_2 = %i_1 + 1

b loop
\[%i_1 = \phi(%i_0, %i_2)\]
i := \text{i} + 1
\%result_1 = \phi(%result_0, %result_2)
\%t1 = %i_1 - \%n
blz \%t1, body, exit

\%t2 = %i_1 * \%n
\%t3 = %m + \%t2
\%t4 = \%t3 + %i_1
\%t5 = \text{load} \%t4
\%result_2 = \%result_1 + \%t5
\%i_2 = %i_1 + 1
b \text{ loop}
%i₁ = ϕ(%i₀, %i₂)
i := i + 1
%result₁ = ϕ(%result₀, %result₂)
%t₁ = %i₁ - %n
t₁ := i + n
blz %t₁, body, exit

%t₂ = %i₁ * %n
t₂ := n*i
%t₃ = %m + %t₂
%t₄ = %t₃ + %i₁
%t₅ = load %t₄
%result₂ = %result₁ + %t₅
%i₂ = %i₁ + 1
b loop
\[%i_1 = \phi(%i_0, %i_2) \]
\[\%result_1 = \phi(\%result_0, \%result_2) \]
\[\%t_1 = \%i_1 - \%n \]
\[\text{blz} \; \%t_1, \text{body}, \text{exit} \]

\[\%t_2 = \%i_1 \times \%n \]
\[\%t_3 = \%m + \%t_2 \]
\[\%t_4 = \%t_3 + \%i_1 \]
\[\%t_5 = \text{load} \; \%t_4 \]
\[\%result_2 = \%result_1 + \%t_5 \]
\[\%i_2 = \%i_1 + 1 \]
\[\text{b loop} \]
\[
\begin{align*}
\%t2_0 &= 0 \\
\%t3_0 &= %m \\
\%t4_0 &= %m \\
\end{align*}
\]

\[
\begin{align*}
\%i_1 &= \phi(%i_0, %i_2) & i := i + 1 \\
\%t2_1 &= \phi(%t2_0, %t2_2) \\
\%t3_1 &= \phi(%t3_0, %t3_2) \\
\%t4_1 &= \phi(%t4_0, %t4_2) \\
\%result_1 &= \phi(%result_0, %result_2) \\
\%t1 &= %i_1 - %n & t1 := i + n \\
blz \ %t1, body, exit\\
\%
\end{align*}
\]

\[
\begin{align*}
\%t2_2 &= %t2_1 + %n & t2 := n \times i \\
\%t3_2 &= %t3_1 + %n & t3 := n \times i + m \\
\%t6 &= %t4_1 + %n \\
\%t4_2 &= %t6 + 1 & t4 := (n+1) \times i + m \\
\%t5 &= load \ %t4_2 \\
%result_2 &= %result_1 + %t5 \\
%i_2 &= %i_1 + 1 \\
b \ loop
\end{align*}
\]
Loop unrolling

- Some loops are so small that a significant portion of the running time is due to testing the loop exit condition.
- We can avoid branching by executing several iterations of the loop at once.
- This optimization trades (potential) run-time performance with code size.
bgz t + 3
\[\Delta(t) \]
Conditional branch \(\Rightarrow \) unconditional branch
Redirect back-edges to next loop copy
Insert epilogue, in case # iterations is not divisible by 4

Single exit:
bgz t, in, out
t-an ind. var w/ \(\Delta(t) = c \leq 0 \)
Single exit: \texttt{bgz t, in, out}

\(t\) an ind. var w/ \(\Delta(t) = c \leq 0\)
bgz \(t + 3 \), in, out

Conditional branch \Rightarrow unconditional branch

Redirect back-edges to next loop copy

Insert epilogue, in case \# iterations is not divisible by 4
bgz \(t + 3\Delta(t) \), in, out

Conditional branch \(\sim \) unconditional branch

Redirect back-edges to next loop copy

Insert epilogue, in case \# iterations is not divisible by 4
bgz t + 3
\[\Delta(t), \text{ in, out} \]
Conditional branch \Rightarrow unconditional branch

Redirect back-edges to next loop copy

Insert epilogue, in case # iterations is not divisible by 4

Copy loop

Single exit:

bgz t, in, out

t an ind. var w/ $\Delta(t) = c \leq 0$
Insert epilogue, in case # iterations is not divisible by 4
Optimization wrap-up

- Optimizer operates as a series of IR-to-IR transformations
- Transformations are typically supported by some analysis that proves the transformation is safe
- Each transformation is simple
- Transformations are mutually beneficial
 - Series of transformations can make drastic changes!