COS320: Compiling Techniques

Zak Kincaid

April 11, 2022

Logistics

- Reminder: HW4 is due today
- HW5 released today. You will implement:
- The worklist algorithm for dataflow analysis
- Constant propagation
- Alias analysis \& dead code elimination
- Register allocation

Loop transformations

Loops

- Almost all execution time is inside loops
- Many optimizations are centered around transforming loops
- Loop invariant code motion: hoist expressions out of loops to avoid re-computation
- Strength reduction: replace a costly operation inside a loop with a cheaper one
- Loop unrolling: avoid branching by excecuting several iterations of a loop
- Lots more: parallelization, tiling, vectorization, ...

What is a loop?

- We're after a graph-theoretic definition of a loop
- Typically no explicit loop syntax at the IR level
- Not sensitive to syntax of source language (loops can be created with while, for, goto, ...)

What is a loop?

- We're after a graph-theoretic definition of a loop
- Typically no explicit loop syntax at the IR level
- Not sensitive to syntax of source language (loops can be created with while, for, goto, ...)
- First attempt: strongly connected components (SCCs)
- Not fine enough - nested loops have only one SCC, but we want to transform them separately
- Too general - makes it difficult to apply transformations

What is a loop?

- We're after a graph-theoretic definition of a loop
- Typically no explicit loop syntax at the IR level
- Not sensitive to syntax of source language (loops can be created with while, for, goto, ...)
- First attempt: strongly connected components (SCCs)
- Not fine enough - nested loops have only one SCC, but we want to transform them separately
- Too general - makes it difficult to apply transformations
- Desiderata:
- Want to at least capture loops that would result from structured programming (programs built with while, if, and sequencing (no goto!))
- Many loop optimizations require inserting code immediately before the loop enters, so loop definition should make that easy

What is a loop?

- A loop of a control flow graph is a set of nodes S such that with a distinguished header node h such that
(1) S is strongly connected
- There is a directed path from h to every node in S
- There is a directed path from any to in S to h
(2) There is no edge from any node outside of S to any node inside of S, except for h
- Implies h dominates all nodes in S : every path from entry to a node in S must go through h

What is a loop?

- A loop of a control flow graph is a set of nodes S such that with a distinguished header node h such that
(1) S is strongly connected
- There is a directed path from h to every node in S
- There is a directed path from any to in S to h
(2) There is no edge from any node outside of S to any node inside of S, except for h
- Implies h dominates all nodes in S : every path from entry to a node in S must go through h
- Observe: a loop has one entry, but may have multiple exits (or none)
- A loop entry is a node with some predecessor outside the loop
- A loop exit is a node with some successor outside the loop

$$
\therefore
$$

Identifying loops

- A back edge is an edge $u \rightarrow v$ such that v dominates u

Identifying loops

- A back edge is an edge $u \rightarrow v$ such that v dominates u
- The natural loop of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v.

Identifying loops

- A back edge is an edge $u \rightarrow v$ such that v dominates u
- The natural loop of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v.
- The natural loop of a back edge can be computed with a DFS on the reversal of the CFG, starting from u

Identifying loops

- A back edge is an edge $u \rightarrow v$ such that v dominates u
- The natural loop of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v.
- The natural loop of a back edge can be computed with a DFS on the reversal of the CFG, starting from u

Identifying loops

- A back edge is an edge $u \rightarrow v$ such that v dominates u
- The natural loop of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v.
- The natural loop of a back edge can be computed with a DFS on the reversal of the CFG, starting from u

Identifying loops

- A back edge is an edge $u \rightarrow v$ such that v dominates u
- The natural loop of a back edge $u \rightarrow v$ is the set of nodes n such that v dominates n and there is a path from n to u not containing v.
- The natural loop of a back edge can be computed with a DFS on the reversal of the CFG, starting from u

Every natural loop is a loop:

Every natural loop is a loop:

(1) Strongly connected

- By DFS construction every node has a path to u (that doesn't pass through v)
- Every node has a path from v (path from entry to node to u must include v)

Every natural loop is a loop:

(1) Strongly connected

- By DFS construction every node has a path to u (that doesn't pass through v)
- Every node has a path from v (path from entry to node to u must include v)
(2) Single entry v

Every natural loop is a loop:

(1) Strongly connected

- By DFS construction every node has a path to u (that doesn't pass through v)
- Every node has a path from v (path from entry to node to u must include v)

2 Single entry v

- By DFS construction, all predecessors of any node except v belong to the loop

Every natural loop is a loop:

(1) Strongly connected

- By DFS construction every node has a path to u (that doesn't pass through v)
- Every node has a path from v (path from entry to node to u must include v)

2 Single entry v

- By DFS construction, all predecessors of any node except v belong to the loop

But not every loop is natural:

Nested loops

- Say that a loop B is nested within A if $B \subseteq A$
- A node can be the header of more than one natural loop.
- Neither is nested inside the other

Nested loops

- Say that a loop B is nested within A if $B \subseteq A$
- A node can be the header of more than one natural loop.
- Neither is nested inside the other
- Commonly, we resolve this issue by merging natural loops with the same header
- Loops obtained by merging natural loops with the same header are either disjoint or nested
- Loops can be organized into a forest

Nested loops

- Say that a loop B is nested within A if $B \subseteq A$
- A node can be the header of more than one natural loop.
- Neither is nested inside the other
- Commonly, we resolve this issue by merging natural loops with the same header
- Loops obtained by merging natural loops with the same header are either disjoint or nested
- Loops can be organized into a forest
- We typically apply loop transformations "bottom-up", starting with innermost loops

Loop preheaders

- Some optimizations (e.g., loop-invariant code motion) require inserting statements immediately before a loop executes
- A loop preheader is a basic block that is inserted immediately before the loop header, to serve as a place to store these statements

Loop invariant code motion

- Loop invariant code motion saves the cost of re-computing expressions that are left invariant (i.e., do not change) in the loop.
- Such computations can be moved the loop's preheader, as long as they are not side-effecting

Loop invariant code motion

- Loop invariant code motion saves the cost of re-computing expressions that are left invariant (i.e., do not change) in the loop.
- Such computations can be moved the loop's preheader, as long as they are not side-effecting
- SSA based LICM:
- An operand is invariant in a loop L if
(1) It is a constant, or
(2) It is a gid, or
(3) It is a uid whose definition does not belong to L

Loop invariant code motion

- Loop invariant code motion saves the cost of re-computing expressions that are left invariant (i.e., do not change) in the loop.
- Such computations can be moved the loop's preheader, as long as they are not side-effecting
- SSA based LICM:
- An operand is invariant in a loop L if
(1) It is a constant, or
(2) It is a gid, or
(3) It is a uid whose definition does not belong to L
- For each computation $\% x=\mathrm{opn}_{1}$ op opn ${ }_{2}$, if opn n_{1} and opn n_{2} are both invariant, move $\% x=\mathrm{opn} \mathrm{n}_{1} \mathrm{op} \mathrm{opn}_{2}$ to pre-header

Loop invariant code motion

- Loop invariant code motion saves the cost of re-computing expressions that are left invariant (i.e., do not change) in the loop.
- Such computations can be moved the loop's preheader, as long as they are not side-effecting
- SSA based LICM:
- An operand is invariant in a loop L if
(1) It is a constant, or
(2) It is a gid, or
(3) It is a uid whose definition does not belong to L
- For each computation $\% x=$ opn $_{1}$ op opn n_{2}, if opn n_{1} and opn n_{2} are both invariant, move $\% x=$ opn ${ }_{1}$ op opn ${ }_{2}$ to pre-header
- This moves definition of $\% x$ outside of the loop, so $\% x$ is now invariant

Induction variables

- An induction variable is a variable $\% x$ such that the difference between successive values of $\% x$ in a loop is constant.
- Common example: the loop counter in a for loop for (int i = 0; i < n; i++)
- Using $\% x(k)$ to denote the value of $\% x$ in the k th iteration of a loop, there is some constant $\Delta(\% x)$ such that

$$
\% x(k+1)=\% x(k)+\Delta(\% x)
$$

Induction variables

- An induction variable is a variable $\% x$ such that the difference between successive values of $\% x$ in a loop is constant.
- Common example: the loop counter in a for loop for (int i = 0; i < n; i++)
- Using $\% x(k)$ to denote the value of $\% x$ in the k th iteration of a loop, there is some constant $\Delta(\% x)$ such that

$$
\% x(k+1)=\% x(k)+\Delta(\% x)
$$

- Useful for several optimizations
- Strength reduction, loop unrolling, induction variable elimination, parallelization, array bound-check elision

Induction variables

- An induction variable is a variable $\% x$ such that the difference between successive values of $\% x$ in a loop is constant.
- Common example: the loop counter in a for loop for (int i = 0; i < n; i++)
- Using $\% x(k)$ to denote the value of $\% x$ in the k th iteration of a loop, there is some constant $\Delta(\% x)$ such that

$$
\% x(k+1)=\% x(k)+\Delta(\% x)
$$

- Useful for several optimizations
- Strength reduction, loop unrolling, induction variable elimination, parallelization, array bound-check elision
- A variable $\% x$ is an basic induction variable for a loop L if it is increased / decreased by a fixed loop invariant quantity in any iteration of the loop.
- $\% x(i+1)=\% x(i)+c \Rightarrow \Delta(\% x)=c$

Induction variables

- An induction variable is a variable $\% x$ such that the difference between successive values of $\% x$ in a loop is constant.
- Common example: the loop counter in a for loop for (int $\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; i++)
- Using $\% x(k)$ to denote the value of $\% x$ in the k th iteration of a loop, there is some constant $\Delta(\% x)$ such that

$$
\% x(k+1)=\% x(k)+\Delta(\% x)
$$

- Useful for several optimizations
- Strength reduction, loop unrolling, induction variable elimination, parallelization, array bound-check elision
- A variable $\% x$ is an basic induction variable for a loop L if it is increased / decreased by a fixed loop invariant quantity in any iteration of the loop.
- $\% x(i+1)=\% x(i)+c \Rightarrow \Delta(\% x)=c$
- A variable $\% y$ is an derived induction variable for a loop L if it is an affine function of a basic induction variable
- $\% y(i)=a \cdot \% x(i)+b \Rightarrow \Delta(\% y)=a \cdot c$

Finding induction variables

- Basic induction variable detection:
- Look for ϕ statements $\% x=\phi\left(\% x_{1}, \ldots, \% x_{n}\right)$ in header
- Each position $\% x_{i}$ corresponding to a back edge of the loop must be the same uid, say $\% x_{k}$
- Find chain of assignments for $\% x_{k}$ leading back to $\% x$, such that each either adds or subtracts an invariant quantity. Success $\Rightarrow \% x$ is an basic induction var.

Finding induction variables

- Basic induction variable detection:
- Look for ϕ statements $\% x=\phi\left(\% x_{1}, \ldots, \% x_{n}\right)$ in header
- Each position $\% x_{i}$ corresponding to a back edge of the loop must be the same uid, say $\% x_{k}$
- Find chain of assignments for $\% x_{k}$ leading back to $\% x$, such that each either adds or subtracts an invariant quantity. Success $\Rightarrow \% x$ is an basic induction var.
- To detect derived induction variables:
- Choose a basic induction variable $\% x$
- Find assignments of the form $\% y=o p n_{1}$ op opn n_{2} where
- op is + or - and opn ${ }_{1}$ and $o p n_{2}$ are either $\% x$, derived induction variables of $\% x$, or loop invariant quantities
- \quad op is $*$ and $o p n_{1}$ and $o p n_{2}$ are as above, and at least one is a loop invariant quantity

Strength reduction

Idea: replace expensive operation with cheaper one (e.g., replace multiplication w/ addition).

```
long trace (long *m, long \(n\) ) \{
long trace (long *m, long \(n\) ) \{
    long \(i\);
    long \(i\);
    long result \(=0\);
    long result \(=0\);
    long *next \(=m\);
    for ( \(i=0 ; i<n\); \(i++\) ) \{
    for ( \(i=0\); \(i<n\); \(i++\) ) \{
        result \(+=*(m+i \star n+i) ; \quad \rightarrow \quad\) result \(+=*\) next;
    \}
        next += \(i+1\);
    return result;
\}
    return result;
\}
```

```
%i}\mp@subsup{i}{1}{}=\phi(%\mp@subsup{i}{0}{},%\mp@subsup{i}{2}{}
%result}\mp@subsup{t}{1}{}=\phi(%resul\mp@subsup{t}{0}{},%resul\mp@subsup{t}{2}{}
%t1 = %i
blz %t1, body, exit
%t2 = %i
%t3 = %m + %t2
%t4 = %t3 + %i
%t5 = load %t4
%result}\mp@subsup{t}{2}{}=%resul\mp@subsup{t}{1}{}+%t
%i}\mp@subsup{i}{2}{}=%\mp@subsup{i}{1}{}+
b loop
```

```
%i
%result}\mp@subsup{|}{1}{}=\phi(%result\mp@subsup{t}{0}{},%resul\mp@subsup{t}{2}{}
%t1 = %i
blz %t1, body, exit
%t2 = %i
%t3 = %m + %t2
%t4 = %t3 + %i
%t5 = load %t4
%result}\mp@subsup{t}{2}{}=%resul\mp@subsup{t}{1}{}+%t
%i}\mp@subsup{i}{2}{}=%\mp@subsup{i}{1}{}+
b loop
```

```
%i}\mp@subsup{i}{1}{}=\phi(%\mp@subsup{i}{0}{},%\mp@subsup{i}{2}{})\quadi:=i+
%result}\mp@subsup{|}{1}{}=\phi(%resul\mp@subsup{t}{0}{},%resul\mp@subsup{t}{2}{}
%t1 = %i
blz %t1, body, exit
%t2 = %i
%t3 = %m + %t2
%t4 = %t3 + %i
%t5 = load %t4
%result}\mp@subsup{t}{2}{}=%resul\mp@subsup{t}{1}{}+%t
%i}\mp@subsup{i}{2}{= %i
b loop
```

```
%i}\mp@subsup{i}{1}{}=\phi(%\mp@subsup{i}{0}{},%\mp@subsup{i}{2}{})\quadi:= i + 
%result}\mp@subsup{|}{1}{}=\phi(%resul\mp@subsup{t}{0}{},%resul\mp@subsup{t}{2}{}
%t1 = %i
blz %t1, body, exit
%t2 = %i
%t3 = %m + %t2
%t4 = %t3 + %i
%t5 = load %t4
%result}\mp@subsup{\mp@code{2}}{= %result}{1}+ + %t5
%i}\mp@subsup{i}{2}{= %i
b loop
```

```
%i
i := i + 1
%result}\mp@subsup{t}{1}{}=\phi(%result\mp@subsup{t}{0}{},%resul\mp@subsup{t}{2}{}
%t1 = %i
t1:= i + n
blz %t1, body, exit
%t2 = %i
t2 := n*i
%t3 = %m + %t2
%t4 = %t3 + %i
%t5 = load %t4
%result}\mp@subsup{t}{2}{}=%resul\mp@subsup{t}{1}{}+%t
%i}\mp@subsup{i}{2}{= %i
b loop
```

```
%i
i := i + 1
%result}\mp@subsup{t}{1}{}=\phi(%result\mp@subsup{t}{0}{},%resul\mp@subsup{t}{2}{}
%t1 = %i
\[
\mathrm{t} 1:=\mathrm{i}+\mathrm{n}
\]
blz \%t1, body, exit
```

```
%t2 = %i
```

%t2 = %i
%t3 = %m + %t2
%t3 = %m + %t2
%t4 = %t3 + %i
%t4 = %t3 + %i
%t5 = load %t4
%t5 = load %t4
%result}\mp@subsup{t}{2}{}=%resul\mp@subsup{t}{1}{}+%t
%result}\mp@subsup{t}{2}{}=%resul\mp@subsup{t}{1}{}+%t
%i}\mp@subsup{i}{2}{= %i
%i}\mp@subsup{i}{2}{= %i
b loop

```
b loop
```

```
%i
i := i + 1
%result}\mp@subsup{t}{1}{}=\phi(%resul\mp@subsup{t}{0}{},%resul\mp@subsup{t}{2}{}
%t1 = %i
t1 := i + n
blz %t1, body, exit
%t2 = %i
%t3 = %m + %t2
%t4 = %t3 + %i
%t5 = load %t4
%result}\mp@subsup{\mp@code{2}}{= %result}{1}+%t
%i}\mp@subsup{i}{2}{= %i
b loop
```

```
%t20 = 0
%t30}= %
%t40 = %m
%i
    i:= i + 1
%t21 = 
%t31 = \phi(%t30, %t32)
%t41 = \phi(%t40, %t42)
%result}\mp@subsup{}{1}{}=\phi(%\mp@subsup{r}{esult}{0},%\mp@subsup{result}{2}{)
%t1 = %i
t1 := i + n
blz %t1, body, exit
```

```
%t22 = %t2 + + %n
```

%t22 = %t2 + + %n
%t32 = %t31 + %n
%t32 = %t31 + %n
t2:= n*i
t2:= n*i
%t6 = %t41 + %n
%t6 = %t41 + %n
%t42 = %t6 + 1
%t42 = %t6 + 1
t4 := (n+1)*i + m
t4 := (n+1)*i + m
%t5 = load %t44
%t5 = load %t44
%result }\mp@subsup{2}{2}{= %result}\mp@subsup{}{1}{}+%t
%result }\mp@subsup{2}{2}{= %result}\mp@subsup{}{1}{}+%t
%i}\mp@subsup{i}{2}{= %i
%i}\mp@subsup{i}{2}{= %i
b loop

```
b loop
```


Loop unrolling

- Some loops are so small that a significant portion of the running time is due to testing the loop exit condition
- We can avoid branching by executing several iterations of the loop at once
- This optimization trades (potential) run-time performance with code size.

Copy loop

Conditional branch \rightsquigarrow unconditional branch

Insert epilogue, in case \# iterations is not divisible by 4

Optimization wrap-up

- Optimizer operates as a series of IR-to-IR transformations
- Transformations are typically supported by some analysis that proves the transformation is safe
- Each transformation is simple
- Transformations are mutually beneficial
- Series of transformations can make drastic changes!

