
COS320: Compiling Techniques

Zak Kincaid

January 24, 2022

Welcome!

• Instructor: Zak Kincaid
• TA: Nicolas Koh

What is a compiler?

• A compiler is a program that takes a program written in a source language and translates it
into a functionally equivalent program in a target language.

• Source languages: C, Java, OCaml, ...
• Target languages: x86 Assembly, Java bytecode, C, ...

• A compiler can also
• Report errors & potential problems

• Uninitialized variables, type errors, ...
• Improve (“optimize”) the program

What is a compiler?

• A compiler is a program that takes a program written in a source language and translates it
into a functionally equivalent program in a target language.

• Source languages: C, Java, OCaml, ...
• Target languages: x86 Assembly, Java bytecode, C, ...

• A compiler can also
• Report errors & potential problems

• Uninitialized variables, type errors, ...
• Improve (“optimize”) the program

Why take COS320?

You will learn:
• How high-level languages are translated to machine language
• How to be a better programmer

• What can a compiler do?
• What can a compiler not do?

• Lexing & Parsing
• (Some) functional programming in OCaml
• A bit of programming language theory
• A bit of computer architecture

Course resources

• Website: http://www.cs.princeton.edu/courses/
archive/spring22/cos320/

• Assignments and zoom link available through canvas
• Email me at least one hour before lecture if you need me to

active zoom
• Discussion forum on ed

• Office hours: Monday 2:00-3:00pm (Zak), more TBA
or by appointment

• Recommended textbook:
Modern compiler implementation in ML (Appel)

• Real World OCaml (Minsky, Madhavapeddy, Hickey)
realworldocaml.org

http://www.cs.princeton.edu/courses/archive/spring22/cos320/
http://www.cs.princeton.edu/courses/archive/spring22/cos320/
realworldocaml.org

Grading

Homework teaches the practice of building a compiler; midterm & final skew towards theory.
• 60% Homework

• 5 assignments, not evenly weighted
• Expect homework to be time consuming!

• 20% Midterm
• Wednesday March 2, in class

• 20% Final

Homework policies

• Homework can be done individually or in pairs
• Due on Mondays at 11pm, with 1 hour grace period
• Can be submitted max 5 days late. 10% penalty per day late, with first four late days

(across all assignments) waived.
• Feel free to discuss with others at conceptual level.

Submitted work should be your own.

Compilers

(Programming) language = syntax + semantics

• Syntax: what sequences of characters are valid programs?
• Typically specified by context-free grammar

<expr> ::=<integer>

|<variable>
|<expr>+ <expr>

|<expr> ∗ <expr>
|(<expr>)

• Semantics: what is the behavior of a valid program?
• Operational semantics: how can we execute a program?

• In essence: an interpreter
• Axiomatic semantics: what can we prove about a program?
• Denotational semantics: what mathematical function does the program compute?

The job of a compiler is to translate from the syntax of one language to another, but preserve
the semantics.

(Programming) language = syntax + semantics

• Syntax: what sequences of characters are valid programs?
• Typically specified by context-free grammar

<expr> ::=<integer>

|<variable>
|<expr>+ <expr>

|<expr> ∗ <expr>
|(<expr>)

• Semantics: what is the behavior of a valid program?
• Operational semantics: how can we execute a program?

• In essence: an interpreter
• Axiomatic semantics: what can we prove about a program?
• Denotational semantics: what mathematical function does the program compute?

The job of a compiler is to translate from the syntax of one language to another, but preserve
the semantics.

1 #inc lude <stdio.h>

3 i n t factorial(i n t n) {
4 i n t acc = 1;
5 whi le (n > 0) {
6 acc = acc * n;
7 n = n - 1;
8 }
9 r e t u r n acc;

10 }

12 i n t main(i n t argc , char *argv []) {
13 printf(”factorial (6) = %d\n”, factorial (6));
14 }

1 f a c t o r i a l :
2 movl $1 , %r a x
3 cmpq $2 , %r d i
4 j l .LBB0_2
5 .LBB0_1 :
6 imulq %r d i , %r a x
7 decq %r d i
8 cmpq $1 , %r d i
9 j g .LBB0_1

10 .LBB0_2 :
11 r e t q

13 main :
14 movl $. s t r , %r d i
15 movl $720 , %r s i
16 c a l l q p r i n t f
17 r e t q

19 . g l o b l . s t r
20 . s t r :
21 . a s c i z ” F a c t o r i a l � i s �%l d \n ”

Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization

Backend

Frontend

1 i n t acc = 1;
2 whi le (n > 0) {
3 acc *= n;
4 n --;
5 }
6 r e t u r n acc;

1 INT , IDENT ”acc”, EQUAL , INT 1, SEMI ,
2 WHILE , LPAREN , IDENT ”n”, GT, INT 0, RPAREN , LBRACE ,
3 IDENT ”acc”, TIMESEQUAL , IDENT ”n”, SEMI ,
4 IDENT ”n”, DECREMENT , SEMI ,
5 RBRACE
6 RETURN , IDENT ”acc”, SEMI

block

decl while return

>

n 0

block

*= --

nacc n

accint acc 1

Lexing

Parsing

block

decl while return

>

n 0

block

*= --

nacc n

accint acc 1

%count = alloca i64
%acc = alloca i64
store i64 %n, i64* %count
store i64 1, i64* %acc

br label %loop

%t1 = load i64, i64* %count
%t2 = icmp sgt i64 %t1, 0

br i1 %t2, label %body, label %exit

%t3 = load i64, i64* %acc
%t4 = mul i64 %t1, %t3
store i64 %t4, i64* %acc
%t5 = sub i64 %t1, 1
store i64 %t5, i64* %count

br label %loop

%t6 = load i64, i64* %acc

ret i64 %t6

T
F

Translation

%count = alloca i64
%acc = alloca i64
store i64 %n, i64* %count
store i64 1, i64* %acc

br label %loop

%t1 = load i64, i64* %count
%t2 = icmp sgt i64 %t1, 0

br i1 %t2, label %body, label %exit

%t3 = load i64, i64* %acc
%t4 = mul i64 %t1, %t3
store i64 %t4, i64* %acc
%t5 = sub i64 %t1, 1
store i64 %t5, i64* %count

br label %loop

%t6 = load i64, i64* %acc

ret i64 %t6

T
F

%count = i64 %n
%acc = i64 1

br label %loop

%count2 = phi i64 %count, %count1
%acc2 = phi i64 %acc, %acc1
%t2 = icmp sgt i64 %count2, 1

br i1 %t2, label %body, label %exit

%acc1 = mul i64 %acc2, %count2
%count1 = sub i64 %count2, 1

br label %loop

%t6 = load i64, i64* %acc

ret i64 %t6

TF

Optimization

%count = i64 %n
%acc = i64 1

br label %loop

%count2 = phi i64 %count, %count1
%acc2 = phi i64 %acc, %acc1
%t2 = icmp sgt i64 %count2, 1

br i1 %t2, label %body, label %exit

%acc1 = mul i64 %acc2, %count2
%count1 = sub i64 %count2, 1

br label %loop

%t6 = load i64, i64* %acc

ret i64 %t6

TF

1 f a c t o r i a l :
2 movl $1 , %r a x
3 cmpq $2 , %r d i
4 j l .LBB0_2
5 .LBB0_1 :
6 imulq %r d i , %r a x
7 decq %r d i
8 cmpq $1 , %r d i
9 j g .LBB0_1

10 .LBB0_2 :
11 r e t q

Code generation

COS320 assignments

By the end of the course, you will build (in OCaml) a complete compiler from a high-level
type-safe language (“Oat”) to a subset of x86 assembly.
• HW1: X86lite interpreter
• HW2: LLVMlite-to-X86lite code generation
• HW3: Lexing, Parsing, Oat-to-LLVMlite translation
• HW4: Higher-level features
• HW5: Analysis and Optimizations

We will use the assignments from Penn’s CIS 341, provided by Steve Zdancevic.

Historical note

• First “modern” compiler for FORTRAN developed at IBM in 1957
• Grace Hopper’s 1951 A-0 loader/linker

• 18 person-years to complete
• Led by John Backus, who won 1977 Turing award

• You will implement one in a semester

Historical note

• First “modern” compiler for FORTRAN developed at IBM in 1957
• Grace Hopper’s 1951 A-0 loader/linker

• 18 person-years to complete
• Led by John Backus, who won 1977 Turing award
• You will implement one in a semester

OCaml

• Why OCaml?
• Algebraic data types + pattern matching are very convenient features for writing compilers

• OCaml is a functional programming language
• Imperative languages operate by mutating data
• Functional languages operate by producing new data

• OCaml is a typed language
• Contracts on the values produced and consumed by each expression
• Types are (for the most part) automatically inferred.

• Good style to write types for top-level definitions

• Wednesday’s lecture: x86lite
• Simple subset of x86 (∼20 instructions)
• Suitable as a compilation target for Oat

• HW1 on course webpage. Due Feb 7.
• You will implement:

• A simulator for X86lite machine code
• An assembler
• A loader

• You may work individually or in pairs

