COS320: Compiling Techniques

Zak Kincaid

January 24,2022



Welcome!

e |nstructor: Zak Kincaid
e TA: Nicolas Koh



What is a compiler?

¢ A compiler is a program that takes a program written in a source language and translates it
into a functionally equivalent program in a target language.

® Source languages: C, Java, OCaml, ...
® Target languages: x86 Assembly, Java bytecode, C, ...



What is a compiler?

¢ A compiler is a program that takes a program written in a source language and translates it
into a functionally equivalent program in a target language.

® Source languages: C, Java, OCaml, ...
® Target languages: x86 Assembly, Java bytecode, C, ...
¢ A compiler can also
® Report errors & potential problems
® Uninitialized variables, type errors, ...
® |mprove (“optimize”) the program



Why take COS3207

You will learn:
¢ How high-level languages are translated to machine language

* How to be a better programmer

® What can a compiler do?
® What can a compiler not do?

Lexing & Parsing

(Some) functional programming in OCaml

A bit of programming language theory

A bit of computer architecture



Course resources

Website: http://www.cs.princeton.edu/courses/
archive/spring22/cos320/
¢ Assignments and zoom link available through canvas

® Email me at least one hour before lecture if you need me to
active zoom

¢ Discussion forum on ed
Office hours: Monday 2:00-3:00pm (Zak), more TBA
or by appointment
Recommended textbook:
Modern compiler implementation in ML (Appel)

Real World OCaml (Minsky, Madhavapeddy, Hickey)
realworldocaml.org

modern
compiler
implementation
in ML

andreu w. appel



http://www.cs.princeton.edu/courses/archive/spring22/cos320/
http://www.cs.princeton.edu/courses/archive/spring22/cos320/
realworldocaml.org

Grading

Homework teaches the practice of building a compiler; midterm & final skew towards theory.
* 60% Homework

® 5 assignments, not evenly weighted
® Expect homework to be time consuming!

¢ 20% Midterm
® Wednesday March 2, in class

® 20% Final



Homework policies

® Homework can be done individually or in pairs

¢ Due on Mondays at 11pm, with 1 hour grace period

¢ Can be submitted max 5 days late. 10% penalty per day late, with first four late days
(across all assignments) waived.

* Feel free to discuss with others at conceptual level.
Submitted work should be your own.



Compilers



(Programming) language = syntax + semantics

¢ Syntax: what sequences of characters are valid programs?
* Typically specified by context-free grammar
<expr> ::=<integer>
|<variable>
|<expr> + <expr>
|<expr> % <expr>
|(<expr>)
* Semantics: what is the behavior of a valid program?
® QOperational semantics: how can we execute a program?
® |nessence: an interpreter

® Axiomatic semantics: what can we prove about a program?
® Denotational semantics: what mathematical function does the program compute?



(Programming) language = syntax + semantics

¢ Syntax: what sequences of characters are valid programs?
* Typically specified by context-free grammar
<expr> ::=<integer>
|<variable>
|<expr> + <expr>
|<expr> % <expr>
|(<expr>)
* Semantics: what is the behavior of a valid program?
® Operational semantics: how can we execute a program?
® |nessence: an interpreter
® Axiomatic semantics: what can we prove about a program?
® Denotational semantics: what mathematical function does the program compute?

The job of a compiler is to translate from the syntax of one language to another, but preserve
the semantics.



—_

OCQwo~NOO UV bW

#include <stdio.h>

int factorial(int n) {

int acc = 1;

while (n > 2) {
acc = acc * n;
n=n-1;

}

return acc;

3

int main(int argc,

char xargv[]) {

printf(”factorial (6) = %d\n”, factorial(6));

3




CQuwoNoCUAWN

_
—_
jury

factorial:

movl
cmpq
jl
.LBBO_1:
imulq
decq
cmpq

18
.LBBO_2:
retq

main :
movl
movl
callq
retq

.globl
.str:

.asciz

$1, %rax
$2, %rdi
.LBBO_2

%rdi , %rax
%rdi

$1, %rdi
.LBBO_1

S.str, %rdi
$720, %rsi
printf

.str

"Factorial-is-%ld\n"




Frontend

Backend

4

4

Compiler phases (simplified)

A\ 4

Lexing

A\

y

Parsing

Abstract syntax tree

Translatlon

Intermediate representatlon ) Optimization

| (Code generation



oOuUTEWN -

Lexing

(LT
gunt® ",
[ a,

"‘t‘ ..A
int acc = 1; 1 INT, IDENT ”acc”, EQUAL, INT 1, SEMI,
while (n > 0) { 2 WHILE, LPAREN, IDENT ”n”, GT, INT @, RPAREN, LBRACE,
acc *= n; 3 IDENT ”acc”, TIMESEQUAL, IDENT ”n”, SEMI,
no--; 4 IDENT ”n”, DECREMENT, SEMI,
} 5  RBRACE
return acc; 6 RETURN, IDENT ”acc”, SEMI
“““ .
block Parsing
decl while return
int acc 1 > block acc
VRN VRN
n 1) *= -—
acc n n



block

1

decl while return
'..
/ | \ e,
* .
int acc 1 > block acc *.Jranslation
*
/' \ / ‘s
" 0 - N %count = alloca 164
/ \ | %acc = alloca i64
acc n n store i64 %n, i64* %count

store i64 1, i64x %acc
br label %loop

%t3 = load 164, i64* %acc
%t4 = mul 164 %tl, %t3
store i64 %t4, i64* %acc
%t5 = sub i64 %tl, 1

%tl = load 164, i64*x %count
%t2 = icmp sgt 164 %tl, @

br il %t2, label %body, label %exit store 164 %t5, i64% %count
\\\\\\\-_-_——— br label %loop
F
T

%t6 = load 164, i64* %acc
ret 164 %t6




%count = alloca i64

%acc = alloca i64

store i64 %n, i64* %count
store i64 1, i64% %acc

br label %loop

—

%t3 = load 164, i64* %acc
%tl = load 164, 164* %eount %t4 = mul 164 %tl, %t3
%t2 = icmp sgt 164 %tl. 0 store i64 %t4, i64x %acc
i P sg ) %t5 = sub i64 %tl1, 1
br i1 %t2, label %body, label %exit store 164 %t5, i64x %count

%t6 = load 164, i64* %acc

ret i64 %t6

g

Optimization '

br label %loop

]
]
]
]
L]
-
L]
“,
LS

"ea,
B
“"=saapluacc2 = phi 164 %acc, %accl

%count = 164 %n
%acc = 164 1
br label %loop

el

%count2 = phi 164 %count, %countl

%t2 = icmp sgt i64 %count2, 1

%accl = mul i64 %acc2, %count2
%countl = sub i64 %count2, 1

br i1 %t2, label %body, label %exit

br label %loop

F

%t6 = load 164, i64* %acc
ret i64 %t6

-




%count = 164 %n
%acc = 164 1
br label %loop

el

%count2 = phi i64 %count, %countl
%acc2 = phi i64 %acc, %accl
%t2 = icmp sgt i64 %count2, 1

%accl = mul i64 %acc2, %count2
%countl = sub 164 %count2, 1

br label %loop

br il %t2, label %body, label %exit

%t6 = load i64, i64* %acc
ret i64 %t6

Code generation

factorial:

movl
cmpq
jl
.LBBO_1:
imulq
decq
cmpq

18
.LBBO_2:
retq

$1, %rax
$2, %rdi
.LBBO_2

Y%rdi, %rax
%rdi

$1, %rdi
.LBBO_1




COS320 assignments

By the end of the course, you will build (in OCaml) a complete compiler from a high-level
type-safe language (“Oat”) to a subset of x86 assembly.

e HW1: X86lite interpreter

HW2: LLVMlite-to-X86lite code generation

HW3: Lexing, Parsing, Oat-to-LLVMlite translation
HW4: Higher-level features

HWS5: Analysis and Optimizations

We will use the assignments from Penn's CIS 341, provided by Steve Zdancevic.



Historical note

Fortran

* First “modern” compiler for FORTRAN developed at IBM in 1957 ’I_L'

® Grace Hoppers 1951 A-O loader/linker
* 18 person-years to complete
¢ Led by John Backus, who won 1977 Turing award




Historical note

First “modern” compiler for FORTRAN developed at IBM in 1957
® Grace Hoppers 1951 A-O loader/linker

18 person-years to complete
Led by John Backus, who won 1977 Turing award
You will implement one in a semester

Fortran

) - |




OCaml



modern
—ampiler
modern NEation
~smpiler In ML
modern AEation
compiler in C
implementation
in Java

andrew w. appel




e Why OCaml?

® Algebraic data types + pattern matching are very convenient features for writing compilers
e OCamlis a functional programming language

® Imperative languages operate by mutating data

® Functional languages operate by producing new data
e OCamlis a typed language

® Contracts on the values produced and consumed by each expression
® Types are (for the most part) automatically inferred.

® Good style to write types for top-level definitions



* Wednesday’s lecture: x86lite
® Simple subset of x86 (~20 instructions)
® Suitable as a compilation target for Oat
* HW1 on course webpage. Due Feb 7.
® You will implement:

® A simulator for X86lite machine code
® Anassembler
® Aloader

® You may work individually or in pairs



