
COS320: Compiling Techniques

Zak Kincaid

February 1, 2022

Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization

Last time: let-based IR

Each instruction has at most three operands (“three-address code”)

<instr> :=let <uid> = <operand> <op> <operand>; Instructions
| load <uid> = <var>;

| store <var> = <operand>;

| return <operand>;

<operand> :=<uid> | <integer> Operands
<op> :=+ | * Operations

Control Flow

Concrete syntax

<instr> :=let <uid> = <operand> <op> <operand>; Instructions
| load <uid> = <var>;

| store <var> = <operand>;

<operand> :=<uid> | <integer> Operands
<op> :=+ | * Operations

<terminator> ::=br <label> Branch
| cbr <cc> <operand> <label> <label> Conditional branch
| return <operand> Return

<cc> ::=EqZ | LeZ | LtZ
<block> ::=<instr><block> | <terminator>

<program> ::=<program><label>: <block> | <block>

Control Flow Graphs (CFG)

i n t sum_upto(i n t n) {
i n t sum = 0;
whi le (n > 0) {

sum += n;
n--;

}
r e t u r n sum;

}

store sum = 0

br loop

load tmp1 = n

loop

let tmp2 = 0 - n

cbr lt tmp2 body exit

load tmp4 = sum

body

load tmp5 = n

let tmp6 = tmp4 + tmp6

store sum = tmp6

load tmp7 = n

let tmp8 = tmp7 - 1

store n = tmp8

br loop

load tmp9 = sum
exit

return tmp9

T

F

Control Flow Graphs (CFG)

i n t sum_upto(i n t n) {
i n t sum = 0;
whi le (n > 0) {

sum += n;
n--;

}
r e t u r n sum;

}

store sum = 0

br loop

load tmp1 = n
let tmp2 = 0 - n

cbr lt tmp2 body exit

loop

load tmp4 = sum
load tmp5 = n
let tmp6 = tmp4 + tmp6
store sum = tmp6
load tmp7 = n
let tmp8 = tmp7 - 1
store n = tmp8

br loop

body

load tmp9 = sum

return tmp9

exit
T

F

• Control flow graphs are a graphical representation of the control flow through a procedure
• A basic block is a sequence of instructions that

1 Starts with an entry, which is named by a label
2 Ends with a control-flow instruction (br, cbr, or return)

• the terminator of the basic block

3 Contains no interior labels or control flow instructions
• A control flow graph (CFG) for a procedure P is a directed, rooted graph where

• The nodes are basic blocks of P
• There is an edge BBi → BBj iff BBj may execute immediately after BBi
• There is a distinguished entry block where the excution of the procedure begins

• CFG models all program executions
• Every execution corresponds to a path in the CFG, starting at entry

• Path = sequence of basic blocks B1, ...,Bn such that for each i, there is an edge from Bi to Bi+1

• Simple path = path without repeated basic blocks
• (But not vice-versa!)

• Graph structure used extensively in optimization (data flow analysis, loop recognition, ...)
• Simple application: dead code elimination

1 Depth-first traversal of the CFG
2 Any unvisited node is removed

• CFG models all program executions
• Every execution corresponds to a path in the CFG, starting at entry

• Path = sequence of basic blocks B1, ...,Bn such that for each i, there is an edge from Bi to Bi+1

• Simple path = path without repeated basic blocks
• (But not vice-versa!)

• Graph structure used extensively in optimization (data flow analysis, loop recognition, ...)
• Simple application: dead code elimination

1 Depth-first traversal of the CFG
2 Any unvisited node is removed

Why basic blocks?

• Control flow graphs may be defined at the instruction-level rather than basic-block level
• However, there are good reasons for using basic blocks

• More compact
• Some optimization passes (“local” optimizations) operate @ basic block level

• E.g., the implementation of redundant load elimination in let3.ml

Constructing a CFG

• “Forwards“ algorithm:
• Traverse statements in IR from top to bottom

• Find leaders: first statement & first statement following a label
• Basic block = leader up to (but not including) next leader

• Alternately, traverse IR from bottom to top, starting a new basic blocks for each
terminator and finishing at label (build_cfg in let3.ml)

• (Assumes every label has a corresponding terminator. Does not assume every terminator has
a corresponding label—implicitly eliminated dead code)

• Can also construct CFG directly from AST

Generating code from a CFG

• Simple strategy: terminator always compiles to return / jump / conditional jump
• “Fall-through” semantics of assembly blocks is never used

• More efficient strategy: elide jumps by ordering blocks appropriately
• A covering set of traces is a set of traces such that

• Each trace is simple (loop free)
• Each basic block belongs to a trace

Generating code from a CFG

• Simple strategy: terminator always compiles to return / jump / conditional jump
• “Fall-through” semantics of assembly blocks is never used

• More efficient strategy: elide jumps by ordering blocks appropriately
• A covering set of traces is a set of traces such that

• Each trace is simple (loop free)
• Each basic block belongs to a trace

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG
• If at least one successor is unvisited, elide jump and place

the successor next in sequence
• If all successors are visited, terminate branch

(see codegen_cfg_trace in let3.ml)

a

b

c d

f g

h

e

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG
• If at least one successor is unvisited, elide jump and place

the successor next in sequence
• If all successors are visited, terminate branch

(see codegen_cfg_trace in let3.ml)

a

b

c d

f g

h

e

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG
• If at least one successor is unvisited, elide jump and place

the successor next in sequence
• If all successors are visited, terminate branch

(see codegen_cfg_trace in let3.ml)

a

b

c d

f g

h

e

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG
• If at least one successor is unvisited, elide jump and place

the successor next in sequence
• If all successors are visited, terminate branch

(see codegen_cfg_trace in let3.ml)

a

b

c d

f g

h

e

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG
• If at least one successor is unvisited, elide jump and place

the successor next in sequence
• If all successors are visited, terminate branch

(see codegen_cfg_trace in let3.ml)

a

b

c d

f g

h

e

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG
• If at least one successor is unvisited, elide jump and place

the successor next in sequence
• If all successors are visited, terminate branch

(see codegen_cfg_trace in let3.ml)

a

b

c d

f g

h

e

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG
• If at least one successor is unvisited, elide jump and place

the successor next in sequence
• If all successors are visited, terminate branch

(see codegen_cfg_trace in let3.ml)

a

b

c d

f g

h

e

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG
• If at least one successor is unvisited, elide jump and place

the successor next in sequence
• If all successors are visited, terminate branch

(see codegen_cfg_trace in let3.ml)

a

b

c d

f g

h

e

Generating a covering set of traces

Basic algorithm: depth-first traversal of the CFG
• If at least one successor is unvisited, elide jump and place

the successor next in sequence
• If all successors are visited, terminate branch

(see codegen_cfg_trace in let3.ml)

a

b

c d

f g

h

e

