Problem 1 (16pts)
Consider the following scalar-valued function
\[f(x, y, z) = x^2 y + \sin(z + 6y), \]
where \(x, y, z \in \mathbb{R} \).

(A) Compute partial derivatives with respect to \(x, y, \) and \(z \).

(B) We can consider \(f \) to take a vector \(\theta \in \mathbb{R}^3 \) as input where \(\theta = [x, y, z]^T \). Compute the gradient \(\nabla_\theta f \).
Evaluate \(\nabla_\theta f \) at \(\theta = [3, \frac{\pi}{2}, 0]^T \).
Problem 2 (16pts)
In this problem, you will demonstrate Clairaut's Theorem, which states that in general, the order in which one computes partial differentiates does not matter. Consider the following scalar-valued function,

\[f(x, y) = x \sin(xy), \]

where \(x, y \in \mathbb{R} \).

(A) Compute \(\frac{\partial}{\partial x} \frac{\partial}{\partial y} f(x, y) \). This means we first compute the partial derivative of \(f \) with respect to \(y \), then compute the partial derivative of the resulting function with respect to \(x \). This is sometimes denoted \(\partial_{xy} f \).

(B) Compute \(\frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y) \).

The correct answers for parts (A) and (B) should be the same, which demonstrates Clairaut's Theorem. This theorem holds more generally for functions \(f(x_1, x_2, \ldots, x_n) \) of \(n \) variables. This theorem is useful since it's sometimes more convenient/efficient to computation partial derivatives in a specific order.
Problem 3 (16pts)

In gradient descent, we attempt to minimize some function $f(x)$ by iteratively updating the parameter $x \in \mathbb{R}^n$ according to the following formula:

$$x_{t+1} = x_t - \lambda (\nabla_x f(x_t))^T,$$

where $\lambda \geq 0$ is a small value known as the learning rate or step size. This formula says to update x so as to move in a direction proportional to the negative gradient.

Consider the function $f(x) = x^T Ax$ where $A \in \mathbb{R}^{n \times n}$ is a matrix.

(A) Implement a function $f(A, x)$ that takes as input an $n \times n$ numpy array A and a 1D array x of length n and returns the output $x^T Ax$.

(B) Implement a function $\text{grad}_f(A, x)$ that takes the same two arguments as above but returns $\nabla_x f(x)$ evaluated at x.

(C) Now implement a third and final function $\text{grad_descent}(A, x, \lambda, \text{num_iters})$ that takes the additional arguments λ, representing the learning rate λ above, and num_iters indicating the total number of iterations of gradient descent to perform. The function should output, via either printing or plotting, the values of x_t and $f(x_t)$ at each iteration of gradient descent.

(D) Use the function you wrote in part (C) to perform gradient descent on f with $A = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$. Set each element of the initial x_0 to any value with magnitude between 10 and 100 of your choosing. Run gradient descent for 50 iterations with learning rates $\lambda = 1, 0.25, 0.1, \text{and } 0.01$. What do you notice? Does x_t always converge to the same value? Does our gradient descent algorithm work every time?
Problem 4 (18pts)
Consider the following vector function from \(\mathbb{R}^3 \) to \(\mathbb{R}^3 \):

\[
f(x) = \begin{bmatrix}
\sin(x_1 x_2 x_3) \\
\cos(x_2 + x_3) \\
\exp\left(-\frac{1}{2}(x_3^2)\right)
\end{bmatrix}
\]

(A) Compute the Jacobian matrix of \(f(x) \)?

(B) Write the determinant of this Jacobian matrix as a function of \(x \).

(C) Is the Jacobian a full rank matrix for all of \(x \in \mathbb{R}^3 \)? Explain your reasoning.
Problem 5 (16pts)
Compute the gradients for the following expressions. (You can use identities, but show your work.)

(A) $\nabla_x \text{trace}(xx^T + \sigma^2 I)$ Assume $x \in \mathbb{R}^n$ and $\sigma \in \mathbb{R}$.

(B) $\nabla_x \frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu)$ Assume $x, \mu \in \mathbb{R}^n$ and invertible symmetric $\Sigma \in \mathbb{R}^{n\times n}$.

(C) $\nabla_x (c - Ax)^T (c - Ax)$ Assume $x, c \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n\times n}$.

(D) $\nabla_x (c + Ax)^T (c - Bx)$ Assume $x \in \mathbb{R}^n$, $c \in \mathbb{R}^m$ and $A, B \in \mathbb{R}^{m\times n}$.
Problem 6 (16pts) (A) The sigmoid function $f : \mathbb{R} \to \mathbb{R}$ (also called the logistic function) is defined to be:

$$f(z) = \frac{1}{1 + e^{-z}}$$ \hspace{1cm} (1)

Compute the derivative of the sigmoid function, i.e., $f'(z)$. Verify that $f'(z) = f(z) (1 - f(z))$

(B) The cost function of logistic regression, a very popular machine learning model, has the following form:

$$c(\theta, x, y) = -y \log\left(\frac{1}{1 + e^{-\theta^\top x}}\right) - (1 - y) \log\left(1 - \frac{1}{1 + e^{-\theta^\top x}}\right)$$ \hspace{1cm} (2)

where $\theta \in \mathbb{R}^d, x \in \mathbb{R}^d, y \in \mathbb{R}$. Compute $\frac{\partial c(\theta, x, y)}{\partial \theta}$, the partial derivative with regards to θ. Verify that $\frac{\partial c(\theta, x, y)}{\partial \theta} = (f(\theta^\top x) - y) x^\top$.
Problem 7 (2pts)
Approximately how many hours did this assignment take you to complete?

My notebook URL: https://colab.research.google.com/xxxxxxxxxxxxxxxxxxxxxxxxxxxx