A l g Or 1 [h 1IMSs ROBERT SEDGEWICK | KEVIN WAYNE

5.2 TRIES

» string symbol tables
» R-way tries
» ternary search fries

» character-based operations

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

5.2 TRIES

» string symbol tables

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Symbol tables: performance summary

Review. Two classic symbol tables: red-black BSTs and hash tables.

frequency of core operations

: : ordered core operations
implementation :
operations on keys
m
red-black BST log n log n log n v compareTo()
equals()
T T T
hash table 1 1 1 hashCode ()

T under uniform hashing assumption

Q. Can we do better?

A. Yes, if we can avoid examining the entire key, as with string sorting.

\

use characters
to guide search

String symbol tables: performance summary

Goal (for string keys). Faster than hashing, more flexible than BSTs.

Benchmark. Count distinct words in a text file. exchange rate:
L character accesses per hash

around O(log n) character accesses per string compare

A

character accesses (typical case) count distinct

_ _ search : space
implementation] insert moby.txt actors.txt
miss (references)

red-black BST L+log?n log? n log? n 4 n 1.4 97 4
_ hashing L L L 4nto16n 0.76 40.6
(linear probing)
n = number of key—value pairs file size words distinct
L = length of key moby.txt 1.2MB 210K 32 K

R = radix actors.txt 82MB 11.4M 900K

5.2 TRIES

» R-way fries

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Tries

[from retrieval, but pronounced “try”]

Etymology.

Tries

Abstract trie.

« Store characters in nodes (not keys).

« Each node has up to R children, one for each possible character in alphabet.

key
by
sea
sells
she
shells
shore

the

v N W O

she

she

Tries: search hit

Follow links corresponding to each character in the key.

« Search hit: node where search ends has a non-null value.

get("shells")

return value in node
corresponding to

@ 3 < last character in key
(return 3)

Tries: search hit

Follow links corresponding to each character in the key.

« Search hit: node where search ends has a non-null value.

get("she")

search may terminate
at an internal node
(return 0)

Tries: search miss

Follow links corresponding to each character in the key.

« Search miss: reach null link or node where search ends has null value.

get("shelter")

@,

no link to t
(return null)

10

Tries: search miss

Follow links corresponding to each character in the key.

« Search miss: reach null link or node where search ends has null value.

get("shell"”)

@,

0,

no value associated
node corresponding to
last character in key
(return null)

11

Tries: Insertion

Follow links corresponding to each character in the key.
« Encounter a null link: create new node.

« Encounter the last character of the key: set value in that node.

put("shore", 7)

@,

12

Trie construction demo

trie

13

R-way fries: Java representation

Node. A value, plus references to R nodes.

private static class Node

{

private Object val;
private Node|] next = new Node[R];

characters are implicitly

defined by link index
IOQPoOEPOL
‘ \ each node has
AN an array of links
and a value
(1)

Remark. An R-way trie stores neither keys nor characters explicitly.

14

R-way tries: Java implementation

public class TrieST<Value>

d

private static final int R = 256; <«—— extended ASCII
private Node root = new Node():;

private static class Node

{ ¥

public void put(String key, Value val)
{ root = put(root, key, val, 0); }

private Node put(Node x, String key, Value val, int d)

{
1f (x == null) x = new Node();
if (d == key.length()) { x.val = val; return x; }
char ¢ = key.charAt(d);
X.next[c] = put(x.next[c], key, val, d+1);
return Xx;
}

private Value get(String key)
{ ¥

15

R-way trie: performance

Parameters. n=number of key—value pairs; L = length of key; R = alphabet size.

Search hit. O(L).

Search miss (worst case). O(L).

Search miss (typical case). O(loggn).

Space. At least ®(nR) space. ()

-

Bottom line. Fast search hit; even faster search miss; but wastes space.

16

Trie quiz 1

What is worst-case running time to insert a key of length L into an R-way trie

that contains n key-value pairs?
" n=number of key-value pairs

L = length of key

A. O() R = alphabet size
B. OR+ L)
C. Om+1L)

D. O(RL)

17

String symbol table implementations cost summary

character accesses (typical case) count distinct
search space
implementation moby.txt actors.txt
miss (references)
red-black BST L +1log?n log? n log? n 4n
hashing
: : L L L 4nto 16n 0.76 40.6
(linear probing)
) _ out of
R-way trie L logpn R+ L C(R+1) n) 1.12 [memory

R-way trie.
« Method of choice for small R.
« Effective for medium R.

« Too much memory for large R.

Challenge. Use less memory, e.g., a 65,536-way trie for Unicode!

18

5.2 TRIES

Algorithms y ternary search tries

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Ternary search tries

- Store characters and values in nodes (not keys).

- Each node has three children: smaller (left), equal (middle), larger (right).

Fast Algorithms for Sorting and Searching Strings

Jon L. Bentley*

Abstract

We present theoretical algorithms for sorting and
searching multikey data, and derive from them practical C
implementations for applications in which keys are charac-
ter strings. The sorting algorithm blends Quicksort and
radix sort; it i1s competitive with the best known C sort
codes. The searching algorithm blends tries and binary
search trees; it is faster than hashing and other commonly
used search methods. The basic ideas behind the algo-

Robert Sedgewick#

that is competitive with the most efficient string sorting
programs known. The second program is a symbol table
implementation that is faster than hashing, which is com-
monly regarded as the fastest symbol table implementa-
tion. The symbol table implementation is much more
space-efficient than multiway trees, and supports more
advanced searches.

In many application programs, sorts use a Quicksort
implementation based on an abstract compare operation,

20

Ternary search tries

« Store characters and values in nodes (not keys).

« Each node has three children: smaller (left), equal (middle), larger (right).

link to TST for all keys that start link to TST for all keys
with a character less than s that start with s

abstract trie . TST

mini BST of
first characters
(drawn in red)

abstract trie links

vo o m e QR O R e

CRNCONGIONORC 8)OO RO

T

ONONGEO OREROREROMO
/ i

;I/E
has 3 children

A/

@

each node

21

Trie quiz 2

Which keys are stored in the designated subtrie of the TST?

A. Strings that start with s.
B. Strings that start with se.
C. Strings that start with sh.

D. Strings that start with she.

@/g
!

22

Search hit in a TST

get("sea")

return value in node
corresponding to
last character in key

23

Search miss in a TST

get("shelter")

no link to t
(return null)

Search in a TST

Compare search key character to key in node and follow links accordingly:

. If
. |If
. If

Searc

Searc

less, go left.
greater, go right.

equal, go middle and advance to the next search key character.

N hit. Node where search ends has a non-null value.

n miss. Either (1) reach a null link or (2) node where search ends has null value.

25

Trie quiz 3

Which value is associated with the key CAC ?

A. 3
B. 4 A
C
C. 5
D. null

26

Ternary search trie construction demo

ternary search trie

27

Trie quiz 4

In which subtrie would the key CCC be inserted?

A.

o 0

28

26-way trie vs. TST

26-way trie. 26 null links in each leaf.

©@@E @ WOWE © @EeWL @ © & O WE@®Ee @ @ @ &
©EOOEWEMPPEOWBHE@EORWMYOYEE®WOLEYEEEEE@E)(E

26-way trie (1035 null links, not shown)

TST. 3 null links in each leaf.

@
® (© ©®
@ O @ ogicPc
A afclcclyogioNllcio giifogcsiglc
T B ORRON gBd— ot Mo e g
ClOMONEP GLIGXONOOIORINSCORL(O (2 ®
OO0 6 OUo © ® @
GRUNORO @
(@Xe)

TST (155 null links)

now
for
tip
11k
dim
tag
jot
sob
nob
sky
hut
ace
bet
men
€gg
few
jJay
ow
joy
rap
gig
wee
was
cab
wad
caw
cue
fee
tap
ago
tar
jam
dug
and

29

TST representation in Java

A TST node is five fields:

A value. private class Node
{
A character. private Value val;
private char c;
A reference to a left TST. Srivate Node Teft. mid, right:
A reference to a middle TST. }

A reference to a right TST.

standard array of links (R = 26) ternary search tree (TST)

link for keys

/ that start with s ———— [

|
TN \ %Q/Q\gﬁ
/ \ \ link for keys —

that start with su

Trie node representations

30

TST: Java implementation

public class TST<Value>

{

private Node root;
private class Node

{

public Value get(String key)
return get(root, key, 0); }

{

private Value get(Node x, String key, 1nt d)

{

if

(X == null) return null;

char ¢ = key.charAt(d);

if
-

S
-

(c < x.C)
se if (c > x.c)

Ise 1f (d < key.length() - 1)

se

return get(x.left,
return get(x.right,
return get(x.mid,
return x.val;

public void put(String Key, Value val)

{

ey,
Key,

Key,

C
C

C

);
);
+1);

31

String symbol table implementation cost summary

character accesses (typical case) count distinct

search space
implementation moby.txt actors.txt
miss (references)

red-black BST L+log?n log? n log? n 4n
hashing
: : L L L 4nto l6n 0.76 40.6
(linear probing)
_ : out of
R-way trie L logpn R+ L (R+1) n 1.12 memory
TST L+logn log n L+logn 0.72 38.7

Bottom line. TST is as fast as hashing (for string keys) and space efficient.

32

5.2 TRIES

Algorithms
» character-based operations

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Autocompletion

Autocompletion.
« User types characters one at a time. «<—— inacell phone, search bar, text editor, shell, ...

- System reports all matching strings.

Google

Google Search I'm Feeling Lucky

awlela][v]u]i[o]
Als|olrlalnlux]L
Rl z|x[c]v]s]n]w

Prefix matches

Prefix matches. Find all keys in symbol table that start with a given prefix.

"she", "shells", and "shore".

Ex 1. Prefix = "sh" — matches

"sea" and "sells".

Ex 2. Prefix = "se" — matches

key value
by 4
sea 6
sells]
she 0
shells 3
shore /

the 5

Warmup: ordered iteration

To iterate over all keys in sorted order:

- Do inorder traversal of trie; add keys encountered to a queue.

- Maintain sequence of characters on path from root to node.

prefix
b

by

S

se
sea
sel
sell
sells
sh
she
shel
shell
shells
sho
shor
shore
T

th
the

queue

by

Sea

sells

she

shells

shore

the

36

Ordered iteration: Java implementation

To iterate over all keys in sorted order:
- Do inorder traversal of trie; add keys encountered to a queue.

- Maintain sequence of characters on path from root to node.

public Iterable<String> keys()

{
Queue<String> queue = new Queue<String>();
collect(root, "", queue):;
return queue;
}
private void collect(Node x, String prefix, Queue<String> queue)
{
1f (x == null) return;
1f (x.val !'= null) queue.enqueue(prefix);

for (char ¢ = 0; c < R; c++)
collect(x.next[c], prefix + c, queue):;

37

Prefix matches in an R-way trie

Prefix matches. Find all keys in symbol table that start with a given prefix.

keysWithPrefix('"sh");

find subtrie for all /

keys beginning with "sh"

collect keys
in that subtrie

38

T9 texting (predictive texting)

Goal. Type text messages on a phone keypad.

Multi-tap input. Enter a letter by repeatedly pressing a key.

EX. good: 4 6 6 6 66 6 3

T9 text input (on 4 billion handsets).

- Find all words that correspond to given sequence of nhumbers.

4663: good, home, gone, hoof.

« Press * to select next option.

« Press O to see all completion options.

« System adapts to user’s tendencies.

how

ju tpnessmce jus:pms once justpfessmc

1

4 szhi'l~

[par

Zabc
5 ikl
8 tuv

39

T9 TEXTING

Q. How to implement T9 texting on a mobile phone?

SONY \— SIEMENS

Pamsugg

ELECTRONICS

1 ‘2Aac HBDEF -

e =
4 GHI 5 KL 6 MNO

——— - —_—
DEL

7Pros 8TV | 9wz | o

1 m —

* # (0 + L Next

40

Network router IP address lookup

IP address lookup. To send packet toward destination IP address x,

network router finds longest IP address in its routing table that is a prefix of x.

N\

backbone router might have 1M entries (which change over time)

routing table and process millions of queries per second
destination (key) gateway (value)
128
128.112 represented as 32-bit
128.112.055 = binary number for IPv4

(instead of string)
128.112.055.15

128.112.136

128.112.155.11 longestPrefix0f(128.112.100.16) = 128.112
128.112.155.13 longestPrefix0f(128.166.123.45) = 128

128.222 ongestPrefix0f(128.112.136.11) = 128.112.136
128.222.136

Note. Not the same as floor: floor(128.112.100.16) = 128.112.055.15

Longest prefix match

Longest prefix match. Find longest key in symbol table that is a prefix of query string.

Ex 1. Query = "shellsort" = match = "shells".
Ex 2. Query = "sheep" — match = "she".
key value
by 4
sea 6
sells 1
she 0
shells 3
shore /

the 5

Longest prefix match in an R-way trie

Longest prefix match. Find longest key in symbol table that is a prefix of query string.
« Search for query string.

- Keep track of longest key encountered.

"she" ‘ "sheH" "shellsort"
e 0 e 0 search ends at m
end of strin e
\ 0 value is nu 0
L oond / return she
sgz;cofegrisn (gt 0 (last key on path) ‘
value 1s nothnull ‘
returmn sne
e : searchl leln'dlsc at
null lin
return shells
(last key on path)

Possibilities for TongestPrefix0f()

45

Patricia tries

Patricia trie.
- Remove one-way branching.

- Each node represents a sequence of characters.
put("shells", 1);

- Implementation: one step beyond this course. put ("shel1fish", 2);
e [
O (shell)
Applications. ® @{1 2

- Database search. (b
» P2P network search. (o) internal
 IP routing tables: find longest prefix match.) branching
« Compressed quad-tree for n-body simulation. .
 Efficiently storing and querying XML documents. @;1)%

O

(h) 2

Also known as: crit-bit tree, radix tree.

Suffix trees

Suffix tree.
. Patricia trie of suffixes of a string.

- Linear-time construction: well beyond scope of this course.

suffix tree for BANANAS A

o~ § R T
{ bd v

g T

Applications.
- Linear-time algorithms for longest repeated substring, longest common substring,
longest palindromic substring, substring search, tandem repeats,
- Computational biology databases (BLAST, FASTA).

47

String symbol tables summary

A success story in algorithm design and analysis.

Balanced BSTs.
« O(log n) key compares per search/insert.

- Supports ordered operations (e.g., rank, select, floor).

Hash tables.

« O(1) probes per search/insert.

Tries.
« O(L +log n) character accesses per search hit/insert.
« O(log n) character accesses per search miss.
« Supports character-based operations (e.g., prefix match).

« Works only for string (or digital) keys.

48

© Copyright 2022 Robert Sedgewick and Kevin Wayne

