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Symbol tables:  performance summary

Review.  Two classic symbol tables:  red–black BSTs and hash tables. 

 

 

 

 

 

 

 

 

 

 

 

Q.  Can we do better? 

A.  Yes, if we can avoid examining the entire key, as with string sorting.

3

implementation

frequency of core operations
ordered

operations
core operations

on keys
search insert delete

red–black BST log n log n log n ✔ compareTo()

hash table 1 † 1 † 1 †
equals() 

hashCode()

† under uniform hashing assumption

use characters 

to guide search



Goal (for string keys).  Faster than hashing, more flexible than BSTs.  

Benchmark.  Count distinct words in a text file.

String symbol tables:  performance summary

4

n = number of key–value pairs 

L = length of key 

R = radix

file size words distinct

moby.txt 1.2 MB 210 K 32 K

actors.txt 82 MB 11.4 M 900 K

character accesses (typical case) count distinct

implementation
search 

hit
search 
miss

insert
space 

(references)
moby.txt actors.txt

red–black BST L + log2 n log2 n log2 n 4 n 1.4 97.4

hashing
(linear probing)

L L L 4 n to 16 n 0.76 40.6

exchange rate: 
L character accesses per hash 

around Θ(log n) character accesses per string compare
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Tries

Etymology.  [ from retrieval, but pronounced “try” ] 

6



Tries

Abstract trie. 

独Store characters in nodes (not keys). 

独Each node has up to R children, one for each possible character in alphabet.
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Tries:  search hit

Follow links corresponding to each character in the key. 

独Search hit:  node where search ends has a non-null value.  

独Search miss:  reach null link or node where search ends has null value.
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Tries:  search hit

Follow links corresponding to each character in the key. 

独Search hit:  node where search ends has a non-null value.  

独Search miss:  reach null link or node where search ends has null value.
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Tries:  search miss

Follow links corresponding to each character in the key. 

独Search hit:  node where search ends has a non-null value. 

独Search miss:  reach null link or node where search ends has null value.
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Tries:  search miss

Follow links corresponding to each character in the key. 

独Search hit:  node where search ends has a non-null value. 

独Search miss:  reach null link or node where search ends has null value.
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Tries:  insertion

Follow links corresponding to each character in the key. 

独Encounter a null link:  create new node. 

独Encounter the last character of the key:  set value in that node. 
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Trie construction demo
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R-way tries:  Java representation

Node.  A value, plus references to R nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remark.  An R-way trie stores neither keys nor characters explicitly.
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private static class Node 

{ 

   private Object val; 

   private Node[] next = new Node[R]; 

}

Trie representation

each node has
an array of links

and a value

characters are implicitly
defined by link index
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no generic array creation

Trie representation

each node has
an array of links

and a value

characters are implicitly
defined by link index
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public class TrieST<Value> 

{ 

   private static final int R = 256; 

   private Node root = new Node(); 

 

   private static class Node 

   {  /* see previous slide */  } 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   private Value get(String key) 

   {  /* similar, see book or booksite */  } 
}

R-way tries:  Java implementation

15

extended ASCII

 public void put(String key, Value val) 

 {  root = put(root, key, val, 0);  }

 private Node put(Node x, String key, Value val, int d) 

 {          

    if (x == null) x = new Node(); 

    if (d == key.length()) { x.val = val; return x; } 

    char c = key.charAt(d); 

    x.next[c] = put(x.next[c], key, val, d+1); 

    return x; 

 }



Parameters.  n = number of key–value pairs; L = length of key; R = alphabet size. 

 

Search hit.  Θ(L). 

Search miss (worst case).  Θ(L). 

Search miss (typical case).  Θ(logR n). 

 

Space.  At least Θ(nR) space. 

 

 

 

 

 

 

 

Bottom line.  Fast search hit; even faster search miss; but wastes space.

Trie representation

each node has
an array of links

and a value

characters are implicitly
defined by link index
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R-way trie:  performance

16

sublinear in L

at least R links per key



Trie quiz 1

What is worst-case running time to insert a key of length L into an R-way trie

that contains n key–value pairs?  

A.  Θ(L)

B.  Θ(R + L)

C.  Θ(n + L)

D.  Θ(R L)

17

n = number of key–value pairs  

L = length of key 

R = alphabet size

might need to create L nodes, 

each containing an array of R links



String symbol table implementations cost summary

 

 

 

 

 

 

 

 

 

 

R-way trie. 

独Method of choice for small R. 

独Effective for medium R. 

独Too much memory for large R. 

 

Challenge.  Use less memory, e.g., a 65,536-way trie for Unicode!

18

character accesses (typical case) count distinct

implementation
search 

hit
search 
miss

insert
space 

(references)
moby.txt actors.txt

red–black BST L + log2 n log2 n log2 n 4 n 1.4 97.4

hashing
(linear probing) L L L 4 n to 16 n 0.76 40.6

R-way trie L logR n R + L (R+1) n 1.12 out of 
memory
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Ternary search tries

独Store characters and values in nodes (not keys). 

独Each node has three children:  smaller (left), equal (middle), larger (right).

20

Jon L. Bentley* Robert Sedgewick# 

Abstract 
We present theoretical algorithms for sorting and 

searching multikey data, and derive from them practical C 
implementations for applications in which keys are charac- 
ter strings. The sorting algorithm blends Quicksort and 
radix sort; it is competitive with the best known C sort 
codes. The searching algorithm blends tries and binary 
search trees; it is faster than hashing and other commonly 
used search methods. The basic ideas behind the algo- 
rithms date back at least to the 1960s but their practical 
utility has been overlooked. We also present extensions to 
more complex string problems, such as partial-match 
searching. 

1. Introduction 
Section 2 briefly reviews Hoare’s [9] Quicksort and 

binary search trees. We emphasize a well-known isomor- 
phism relating the two, and summarize other basic facts. 

The multikey algorithms and data structures are pre- 
sented in Section 3. Multikey Quicksort orders a set of II 
vectors with k components each. Like regular Quicksort, it 
partitions its input into sets less than and greater than a 
given value; like radix sort, it moves on to the next field 
once the current input is known to be equal in the given 
field. A node in a ternary search tree represents a subset of 
vectors with a partitioning value and three pointers: one to 
lesser elements and one to greater elements (as in a binary 
search tree) and one to equal elements, which are then pro- 
cessed on later fields (as in tries). Many of the structures 
and analyses have appeared in previous work, but typically 
as complex theoretical constructions, far removed from 
practical applications. Our simple framework opens the 
door for later implementations. 

The algorithms are analyzed in Section 4. Many of the 
analyses are simple derivations of old results. 

Section 5 describes efficient C programs derived from 
the algorithms. The first program is a sorting algorithm 

Fast Algorithms for Sorting and Searching Strings 

that is competitive with the most efficient string sorting 
programs known. The second program is a symbol table 
implementation that is faster than hashing, which is com- 
monly regarded as the fastest symbol table implementa- 
tion. The symbol table implementation is much more 
space-efficient than multiway trees, and supports more 
advanced searches. 

In many application programs, sorts use a Quicksort 
implementation based on an abstract compare operation, 
and searches use hashing or binary search trees. These do 
not take advantage of the properties of string keys, which 
are widely used in practice. Our algorithms provide a nat- 
ural and elegant way to adapt classical algorithms to this 
important class of applications. 

Section 6 turns to more difficult string-searching prob- 
lems. Partial-match queries allow “don’t care” characters 
(the pattern “so.a”, for instance, matches soda and sofa). 
The primary result in this section is a ternary search tree 
implementation of Rivest’s partial-match searching algo- 
rithm, and experiments on its performance. “Near neigh- 
bor” queries locate all words within a given Hamming dis- 
tance of a query word (for instance, code is distance 2 
from soda). We give a new algorithm for near neighbor 
searching in strings, present a simple C implementation, 
and describe experiments on its efficiency. 

Conclusions are offered in Section 7. 

2. Background 
Quicksort is a textbook divide-and-conquer algorithm. 

To sort an array, choose a partitioning element, permute 
the elements such that lesser elements are on one side and 
greater elements are on the other, and then recursively sort 
the two subarrays. But what happens to elements equal to 
the partitioning value? Hoare’s partitioning method is 
binary: it places lesser elements on the left and greater ele- 
ments on the right, but equal elements may appear on 
either side. 

* Bell Labs, Lucent Technologies, 700 Mountam Avenue, Murray Hill. 
NJ 07974; jlb@research.bell-labs.com. 

# Princeton University. Princeron. NJ. 08514: rs@cs.princeton.edu. 

Algorithm designers have long recognized the desir- 
irbility and difficulty of a ternary partitioning method. 
Sedgewick [22] observes on page 244: “Ideally, we would 
llke to get all [equal keys1 into position in the file, with all 

360 



独Store characters and values in nodes (not keys). 

独Each node has three children:  smaller (left), equal (middle), larger (right).

Ternary search tries

21
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Which keys are stored in the designated subtrie of the TST?

A. Strings that start with s .

B. Strings that start with se .

C. Strings that start with sh .

D. Strings that start with she .

Trie quiz 2
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Search hit in a TST
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Search miss in a TST
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Search in a TST

Compare search key character to key in node and follow links accordingly: 

独If less, go left. 

独If greater, go right. 

独If equal, go middle and advance to the next search key character. 

Search hit.  Node where search ends has a non-null value.  

Search miss.  Either (1) reach a null link or (2) node where search ends has null value.

25



Trie quiz 3

Which value is associated with the key CAC ?

A.  3

B.  4

C.  5

D.  null
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Ternary search trie construction demo
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Trie quiz 4

In which subtrie would the key CCC be inserted?

A.  

B.  

C.  

D.  

E.
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26-way trie vs. TST

26-way trie.  26 null links in each leaf. 

 

 

 

 

 

 

 

TST.  3 null links in each leaf.
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26-way trie  (1035 null links, not shown)

TST  (155 null links)
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TST representation in Java

A TST node is five fields: 

独A value.  

独A character. 

独A reference to a left TST. 

独A reference to a middle TST. 

独A reference to a right TST.

30

private class Node 

{ 

   private Value val; 

   private char c; 

   private Node left, mid, right; 

}

Trie node representations

s

e h u

link for keys
that start with s

link for keys
that start with su

h
ue

standard array of links (R = 26) ternary search tree (TST)

s



TST:  Java implementation

31

public class TST<Value> 

{ 

   private Node root; 

   private class Node 

   {  /* see previous slide */  } 
    

   public Value get(String key) 

   {  return get(root, key, 0);  } 

 

 

 

 

 

 

 

 

 

 

   public void put(String Key, Value val) 

   {  /* similar, see book or booksite */  } 
}

private Value get(Node x, String key, int d) 

{  

   if (x == null) return null;      

   char c = key.charAt(d);       

   if      (c < x.c)              return get(x.left,  key, d);   

   else if (c > x.c)              return get(x.right, key, d);   

   else if (d < key.length() - 1) return get(x.mid,   key, d+1);   

   else                           return x.val; 

}



String symbol table implementation cost summary

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bottom line.  TST is as fast as hashing (for string keys) and space efficient.

32

character accesses (typical case) count distinct

implementation
search 

hit
search 
miss

insert
space 

(references)
moby.txt actors.txt

red–black BST L + log2 n log2 n log2 n 4 n 1.4 97.4

hashing
(linear probing) L L L 4 n to 16 n 0.76 40.6

R-way trie L logR n R + L (R+1) n 1.12 out of 
memory

TST L + log n log n L + log n 4 n 0.72 38.7
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Autocompletion

Autocompletion. 

独User types characters one at a time. 

独System reports all matching strings.

34

in a cell phone, search bar, text editor, shell, ...



Prefix matches

Prefix matches.  Find all keys in symbol table that start with a given prefix. 

 

Ex 1.  Prefix = "sh" ⟹  matches =  "she", "shells", and "shore". 

Ex 2.  Prefix = "se" ⟹  matches =  "sea" and "sells".

35

key value

by 4

sea 6

sells 1

she 0

shells 3

shore 7

the 5



To iterate over all keys in sorted order: 

独Do inorder traversal of trie; add keys encountered to a queue. 

独Maintain sequence of characters on path from root to node. 

Warmup: ordered iteration
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Ordered iteration:  Java implementation

To iterate over all keys in sorted order: 

独Do inorder traversal of trie; add keys encountered to a queue. 

独Maintain sequence of characters on path from root to node. 

37

public Iterable<String> keys() 

{   

   Queue<String> queue = new Queue<String>(); 

   collect(root, "", queue); 

   return queue; 

} 

private void collect(Node x, String prefix, Queue<String> queue) 

{ 

   if (x == null) return; 

   if (x.val != null) queue.enqueue(prefix); 

   for (char c = 0; c < R; c++) 

      collect(x.next[c], prefix + c, queue); 

} 

sequence of characters 

on path from root to x

or use StringBuilder



Prefix matches in an R-way trie

Prefix matches.  Find all keys in symbol table that start with a given prefix. 
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T9 texting (predictive texting)

Goal.  Type text messages on a phone keypad. 

 

Multi-tap input.  Enter a letter by repeatedly pressing a key. 

Ex.  good:  4  6 6 6  6 6 6  3 

 

 

T9 text input (on 4 billion handsets). 

独Find all words that correspond to given sequence of numbers. 

4663:  good, home, gone, hoof. 

独Press * to select next option. 

独Press 0 to see all completion options. 

独System adapts to user’s tendencies.
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http://www.t9.com

“a much faster and more fun way to enter text”

textonyms



T9 TEXTING

Q.  How to implement T9 texting on a mobile phone?

40



IP address lookup.  To send packet toward destination IP address x, 

network router finds longest IP address in its routing table that is a prefix of x. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note.  Not the same as floor:

destination (key) gateway (value)
128

128.112

128.112.055

128.112.055.15

128.112.136

128.112.155.11

128.112.155.13

128.222

128.222.136

Network router IP address lookup

43

floor(128.112.100.16) = 128.112.055.15

longestPrefixOf(128.112.100.16) = 128.112 

longestPrefixOf(128.166.123.45) = 128 

longestPrefixOf(128.112.136.11) = 128.112.136

represented as 32-bit 

binary number for IPv4 

(instead of string)

routing table
backbone router might have 1M entries (which change over time) 

and process millions of queries per second 



Longest prefix match

Longest prefix match.  Find longest key in symbol table that is a prefix of query string. 

 

Ex 1.  Query = "shellsort"  ⟹  match =  "shells". 

Ex 2.  Query = "sheep"  ⟹  match =  "she".
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key value
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the 5



Longest prefix match in an R-way trie

Longest prefix match.  Find longest key in symbol table that is a prefix of query string. 

独Search for query string. 

独Keep track of longest key encountered.

45

Possibilities for longestPrefixOf()
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Patricia tries

Patricia trie.  [ Practical Algorithm to Retrieve Information Coded in Alphanumeric ] 

独Remove one-way branching. 

独Each node represents a sequence of characters. 

独Implementation: one step beyond this course. 

 

 

Applications. 

独Database search. 

独P2P network search. 

独IP routing tables:  find longest prefix match. 

独Compressed quad-tree for n-body simulation. 

独Efficiently storing and querying XML documents. 

 

 

 

Also known as: crit-bit tree, radix tree.
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put("shells", 1);
put("shellfish", 2);

Removing one-way branching in a trie
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Suffix trees

Suffix tree. 

独Patricia trie of suffixes of a string. 

独Linear-time construction:  well beyond scope of this course. 

 

 

 

 

 

 

 

 

 

Applications. 

独Linear-time algorithms for longest repeated substring, longest common substring, 

longest palindromic substring, substring search, tandem repeats, …. 

独Computational biology databases (BLAST, FASTA).
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BANANAS A NA S

NA S S NAS

NAS S

su#x tree for BANANAS

beyond scope 

of this course



String symbol tables summary

A success story in algorithm design and analysis. 

 

Balanced BSTs.  [ red–black BSTs ] 

独Θ(log n) key compares per search/insert. 

独Supports ordered operations (e.g., rank, select, floor). 

 

 

Hash tables.  [ separate chaining, linear probing ] 

独Θ(1) probes per search/insert. 

 

 

Tries.  [ R-way tries, ternary search tries ] 

独Θ(L + log n) character accesses per search hit/insert. 

独Θ(log n) character accesses per search miss. 

独Supports character-based operations (e.g., prefix match). 

独Works only for string (or digital) keys.
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worst case

uniform hashing assumption

typical applications



©  Copyright 2022 Robert Sedgewick and Kevin Wayne

49


