Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

5.1 STRING SORTS

ROBERT SEDGEWICK | KEVIN WAYNE

» strings in Java

» key-indexed counting
» LSD radix sort

» MSD radix sort

» 3-way radix quicksort

» suffix arrays

https://algs4.cs.princeton.edu

5.1 STRING SORTS

» strings in Java

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

dtring processing

String. Sequence of characters.

Important fundamental abstraction.
- Programming systems (e.g., Java code).
« Communication systems (e.g., email).
- Information processing.

- Genomic sequences.

“The digital information that underlies biochemistry, cell
biology, and development can be represented by a simple
string of G’s,A’s, T’s and C’s. This string is the root data

structure of an organism’s biology. 7 — M. V. Olson

The char data type

C char data type. Typically an 8-bit integer (between 0 and 255).

« Supports 7-bit ASCII.

» Represents only 28 = 256 characters.

012 3 456 7 38 9 ABCDEF

0 [NUL LF CR
1

2 |SP| ! #1$(% & C|) + 1, |-
3101123456 |7|8[9]|:];|<]|=
4 A(B|C|D|E|F|G|H|I|]J|K|L|M
5{P|QIR|S|T|U|IVIW|X[Y|Z[L[]|\]|]
6 alblc|d|e|f|g|h|{i1]|]|k|[T]|m
/lplaglris|tlulv|iw|x|y|lz|1]|]|}

all 27 = 128 ASCII characters

Aa o a

U+0041 U+OOE1 U+2202 U+1F4A9

some Unicode characters

can use as an index into an array

/

Java char data type. A 16-bit unsigned integer (between 0 and 65,535).

« Supports 16-bit Unicode 1.0.1.

« Supports 21-bit Unicode 10.0.0 (awkwardly via UTF-8).

| 9 Unicode

U+1F496

@

| € UNICODE

The String data type (in Java 11)

String data type. Immutable sequence of characters.

Java 11 representation. A fixed-length char[] array.
s.length()

l

O 1 2 3 4 5 6 7 8 9 10 11 12
s—A T T A C K A T D A W N

f

s.charAt(3)

m

length number of characters s.length()

indexing character at index i s.charAt(1) |

_ concatenate one String to
concatenation S + t len(s) + len(t) < allocates new charf]
the end of the other

compare two Strings length of

longest common prefix

comparison s.compareTo(t) lcp(s, 1) «

lexicographically

String performance trap

Q. How to build a long string, one character at a time?

public static String reverse(String s)

{
String reverse = "";
for (Aint 1 = s.length() - 1; 1 >= 0; 1--) o
reverse += s.charAt(i): . quadratic time
(1+2+3+...+n)
return reverse;
}

StringBuilder data type. Mutable sequence of characters.

Java representation. A resizing char[] array.

public static String reverse(String s)

{
StringBuilder reverse = new StringBuilder();
for (int 1 = s.length() - 1; 1 >= 0; 1--) linear time
reverse.append(s.charAt(1));) n+ (1+24+4+8+16+...+n)

return reverse.toString();

THE STRING DATA TYPE: IMMUTABILITY

Q. Why are Java strings immutable?

Alphabets

Digital key. Sequence of digits over a given alphabet.

Radix. Number of digits R in alphabet.

name R() IgR() characters
BINARY 2 1 01
OCTAL 8 3 01234567
DECIMAL 10 4 0123456789
HEXADECIMAL 16 4 0123456789ABCDEF
DNA 4 2 ACTG
LOWERCASE 26 5 abcdefghijklmnopgrstuvwxyz
UPPERCASE 26 5 ABCDEFGHIJKLMNOPQRSTUVWXYZ
PROTEIN 20 5 ACDEFGHIKLMNPQRSTVWY
wseos oo UGN e
ASCITI 128 7 ASCII characters
EXTENDED_ASCITI 256 8 extended ASCII characters
UNICODE16 65536 16 Unicode characters

techniques also extend to
64-bit integers and other digital keys

|

Note. We use extended ASCII alphabet in this lecture (but analyze in terms of R).

5.1 STRING SORTS

» key-indexed counting

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Review: summary of the performance of sorting algorithms

Frequency of calls to compareTo().

m guarantee m extra space stable? operations on keys

insertion sort 5 n? V4 n? O(1) compareTo()
mergesort nlog, n nlog, n O(n) v compareTo()
quicksort 1.39nlog, n" 1.39nlog,n" O(ogn) * compareTo()
heapsort 2nlog,n 2nlog,n O(1) compareTo()

* probabilistic

Sorting lower bound. In the worst case, any compare-based sorting algorithm

makes Q(n log n) compares. « compareTo() not constant time for string keys

Q. Can we sort strings faster (despite lower bound)?
use characters to make

A. Yes, by exploiting access to individual characters. <— R-way decisions
(instead of binary decisions)

11

Key-indexed counting: assumptions about keys

Assumption. Each key is an integer between 0 and R - 1.

Implication. Can use key as an array index.

Applications.
« Sort class roster by section number.
« Sort phone numbers by area code.
« Sort playing cards by suit.
« Sort string by first letter.

C- Use as a subroutine in string sorting algorithm.)

Remark. Keys typically have associated data =

can’t simply count keys of each value.

input

name section

Anderson
Brown
Davis
Garcia
Harris
Jackson
Johnson
Jones
Martin
Martinez
Miller
Moore
Robinson
Smith
Taylor
Thomas
Thompson
White
Williams
Wi lson

small integers

N

—— B~ WN PSP WPSANPEFENNPEPEP WA WERE AP~ WW

keys are

sorted result
(by section)

Harris
Martin
Moore
Anderson
Martinez
Miller
Robinson
White
Brown
Davis
Jackson
Jones
Taylor
Williams
Garcia
Johnson
Smith
Thomas
Thompson
Wilson

A DD DA DA DWW WWWWNDMNDNDNDNRRRER

12

Key-indexed counting demo

Goal. Sort an array a[] of n characters between 0 and R - 1.

™

R=6
1 a[i]
0 d
int n = a.length; 1 a
int[] count = new 1nt[R+1];) C ‘\\\\ use a for
3 £ b for
for (int 1 =0; 1 < n; 1++) c for
count[al[i]+1]++: 4 f d for
5 b e for
for (int r = 0; r < R; r++) 6 d f for
count|r+1] += count|r]; . h
for (Aint 1 = 0; 1 < n; 1++) 8 t
aux|countlalill++] = alil;: 9 b
10 e
for (int i = 0; 1 < n; i++)
11 a

al1] = aux|1];

uvT D W NN — O

Key-indexed counting demo

Goal. Sort an array a[] of n characters between 0 and R - 1.

« Compute character frequencies.

i ali] offset by 1
[stay tuned]
0 d
int n = a.length; 1 a l
int[] count = new 1nt[R+1];) C r count[r]
S for (int 1 = 0; 1 < n; 1++) , ; ~
frequencies > countlal1]+1]++; b \2
5 b C 3
for (int r = 0; r < R; r++) 6 d 9 *1
count| r+1| += count|r];
[r+1] [r] . . N,
for (int 1 = 0; 1 < n; 1++) 3 f f *1
aux[countlalil]++] = ali]; 9 | b N
10 e
for (int 1 = 0; 1 < n; i++)
11 a

al1] = aux|1];

Key-indexed counting demo

Goal. Sort an array a[] of n characters between 0 and R - 1.

« Compute cumulative frequencies.

int n = a.length;
int[] count = new 1nt[R+1];

for (int 1 =0; 1 < n; 1++)
countlali]+1]++;

for (int r = 0; r < R; r++)

compute
> count|[r+l] += count|r];

cumulates

for (Aint 1 =0; 1 < n; 1++)
aux|countlalill++] = ali]:

for (int 1 = 0; 1 < n; 1++)
al1] = aux|1];

—d »

© 00 N oo ui A W NN = O

10
11

Q)
O M O —+Hh O O T +H +Hh N v O s
| |

r count[r]

- ® Q N T Q

O 00 OO v N O

12

6 keys < d, 8 keys < e
sodsgoinal6] and a[7]

15

Key-indexed counting demo

Goal. Sort an array a[] of n characters between 0 and R - 1.

 Distribute items to auxiliary array using cumulative frequencies.

move
items

int n = a.length;
int[] count = new 1nt[R+1];

for (int 1 =0; 1 < n; 1++)
countlali]+1]++;

for (int r = 0; r < R; r++)
count|r+1] += count|r];

for (int 1 =0; 1 < n; 1++)

v

for (int 1 = 0; 1 < n; 1++)
al1] = aux|1];

aux[countlalill++] = al[i]:

—d »

© 00 N oo ui A W NN = O

10
11

Q)
O M O —+Hh O O O +H +Hh O o o s
| |

r count[r]

- ® Q N T Q

O o0 O U1 N

12
12

.i

© 00 N o ui A~ W NN = O

L
=

aux[1]

-+ —Hh Hh O & o N O T T o w

16

Key-indexed counting demo

Goal. Sort an array a[] of n characters between 0 and R - 1.

« Copy back into original array.

int n = a.length;
int[] count = new 1nt[R+1];

for (int 1 =0; 1 < n; 1++)
countlali]+1]++;

for (int r = 0; r < R; r++)
count|r+1] += count|r];

for (Aint 1 =0; 1 < n; 1++)
aux|countlalill++] = ali]:

for (int i =0: 1 < n; i++)

copy =1 _ X
back > al1] = aux[1];

—d »

© 00 N oo ui A W NN = O

10
11

Q)
-+ =+ -Hh ®m® & O N T T T v w !
| |

r count[r]

- ® Q N T Q

O o0 O U1 N

12
12

.i

© 00 N o ui A~ W NN = O

L
=

aux[1]

-+ —Hh Hh O & o N O T T o w

17

Radix sorting: quiz 1

Which of the following are properties of key-indexed counting?

A.

B.

O + R) time.

O + R) extra space.

Stable.

All of the above.

Anderson
Brown
Davis
Garcia
Harris
Jackson
Johnson
Jones
Martin
Martinez
Miller
Moore
Robinson
Smith
Taylor
Thomas
Thompson
White
Williams
Wilson

Harris
Martin
Moore
Anderson
Martinez

Miller
Robinson
White
Brown
Davis
Jackson

Jones
Taylor
Wil11ams
Garcia
Johnson
Smith
Thomas
Thompson
W1ilson

T

AN DN DMNDMNDNDNWWWWWWNDINDINNNRRR

2
3
3
4
1
3
4
3
1
2
2
1
2
4
3
4
4
2
3
4

stability

18

5.1 STRING SORTS

Algorithms » LSD radix sort

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Least-significant-digit-first (LSD) radix sort

« Consider characters from right to left.

« Stably sort using character d as the key (using key-indexed counting).

sort key (d =2) sort key (d=1) sort key (d =0)
l l l
O |d|a]|b 0 b 0 a 0 | a
1 | a|d|d 1 b 1 a 1 | a
2 | clalb \ 2 b 2 a 2 | b
3 | f|la|d 3 d 3 a 3 | b
4 | f|e|e \ 4 d 4 a 4 | b
5 | blald > 5 d 5 b 5 | C
6 | d|a|d > 6 d 6 C 6 | d
/7 | b|le|e 7 d 7 d 7 | d
8 | f|eld — 8 d 8 e 8 | e
9 | b|e|d / 9 e 9 e 9 | f
10 | e | b | Db 1 10 e 10 e 10 | f
11 | a | c | e 11 e 11 e 11 | f

sort is stable strings sorted!

(arrows do not cross)

LSD string sort: correctness proof

Proposition. LSD sorts any array of n strings, each of length w, in ®©(w(n + R)) time.

Pf of correctness.
« Inductive hypothesis: after pass i, strings are
sorted by last i characters.
« After pass i+ 1, string are sorted by last
i + 1 last characters because...
— if two strings differ on sort key, key-indexed
counting puts them in proper relative order
— if two strings agree on sort key, stability of
key-indexed counting keeps them in proper

relative order

Proposition. LSD sort is stable.

Pf. Key-indexed counting is stable.

O 00 N o uvi Ao W N = O

R
R O

after pass i
d|lal|b
clajlb
fla|d
b la]|d
d|a|d
e |blb
a | c

o

O | =h| T | h| Q
(¢ (¢
O | o | | m

T

sorted from
previous passes
(by induction)

after pass i+1

0 | a e
1 | a d
2 | b d
3 | b d
4 | b e
5 b
6 |[d] b
7 | d d
8 | e b
9 |([f d
10 |[f] d
11 | f] e
T
sort key

21

LSD string sort (for fixed-length strings): Java implementation

public class LSD

{

public static void sort(String[] a, int w)

{

AN

int R = 256; «<—— radixR fixed-length w strings

int n = a.length;
String[] aux = new String[n];

do key-indexed counting

for (int d = w-1; d >= 0; d--) - for each digit from right to left

{
int[] count = new int[R+1]; key-indexed counting
for (int i = 0; i < n; i++) {eliig) EnErEEtsT ¢
count[a[i] + 1]++;
for (int r =0; r < R; r++)
count[r+1l] += count[r];
for (int 1 =0; 1 < n; 1++)
aux[count[a[i] 1++] = a[1];
for (int 1 =0; 1 < n; 1++)
al1] = aux[1];
}

22

Summary of the performance of sorting algorithms

Frequency of calls to compareTo() and charAt().

m guarantee m extra space stable? operations on keys

insertion sort b n? V4 n? O(1) compareTo()

one call to compareTo()

mergesort nlog, n nlog, n On) v compareTo() <« can involve as many as
2w calls to charAt()

quicksort 1.39nlog, n " 1.39nlog, n O(log n) compareTo()
heapsort 2nlog,n 2nlog,n O(1) compareTo()
LSD sort t 2wn 2wn O(n + R) v charAt()
T * probabilistic
but ©(w(n+R)) t fixed-length w keys

array accesses

Google CEO Eric Schmidt interviews Barack Obama in November 2007

Radix sorting: quiz 2

Which algorithm below is fastest for sorting 1 million 32-bit integers?

A. Insertion sort.

01110110111011011101...1011101

B. Mergesort.

C. Quicksort.

D. LSD sort.

25

5.1 STRING SORTS

Algorithms
» MSD radix sort

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Reverse LSD

« Consider characters from left to right.

« Stably sort using character d as the key (using key-indexed counting).

O 00 N O v A~ W N = O

i
=

d b
a d
C b
f d
f e
b d
d d
b e
f d
b d
e b

(>

O 00 N o uvi Ao W N = O

ke
R O

sort key (d =0)

l

a d
a e
b d
b e
b d
C b
d b
d d
e b
f d
f e
f d

O o0 N o ui &~ W N = O

R
R O

sort key (d=1)

l

blal|d
clalb
d|alb
d | a]d
tlald
e | blb
a | c|e
a | dj|d
b | e | e
b |e|d
flele
f|leld

sort key (d =2)

l
O | c|al|b
1 | d|alb
2 | e | b|b
3 | blajd
4 | d |a|d
5 | T lald
6 | a | d|d
/7 | ble]d
8 | T |e|d
9 | a|c|e
10 | b | e | e
11 | T | e | e

strings not sorted!

27

Most-significant-digit-first (MSD) radix sort

Overview.
 Partition array into R subarrays according to first character. - use key-indexed counting
« Recursively sort all strings that start with each character. < key-indexed counts delineate subarray boundaries

(excluding the first characters in subsequent sorts)

1
L dlajb 0 a | djd count|[] i
1 | a|d]d 1 |al|c]|e

2 b d
2 clal|b 2 b |a | d a| O / a

3 b e e
3 fla]|d 3 b | e | e b | 2 \

4 b e d
4 | f |e]e 4 | b |e]|d S |

d | 6 \ sort subarrays recursively

: il Bl > M 5 clalb — (excluding first characters)
6 | d|a|d 6 | d|al|b e | 8 /
/ | bleje 7 | d|ald f1 9 S I
8 | fle|d 8 | e | b|b - | 12 - a1 a4
9 | b|e|d 9 | f|a]d

8 2 b b
10 | e | b | b 10 | £ | e | e
11 | a | c | e 11 | f | e | d 9 f 1l ald

10 f e e
T 11 f e d

sort key (d =0)

MSD string sort (for fixed-length strings): Java implementation

public static void sort(String[] a, int w) <«—— fixed-length w strings

{

aux = new Stringla.length]; <« recycles aux[] array
sort(a, aux, w, O, a.length - 1, 0);

but not count[] array

'] aux, 1nt w, 1nt lo, int hi, 1int d) =«

private static void sort(String[] a, Stri

if (hi <= 1o || d == w) return; « subarrays of length 0 or 1; or all w characters match
int[] count = new int[R+1]; key-indexed counting
for (int 1 = 1o 1 <= hi; i++) (using character d)

count[a[1].charAt(d) + 1]++;
for (Aint r =0; r < R; r++)
count[r+l] += count[r];
for (Aint 1 = 1o; 1 <= hi; 1++)
aux[count[a[1].charAt(d)]++] = al[1];
for (Aint 1 = 1o; 1 <= hi; 1++)
al1] aux[1 - lo];

sort(a, aux, w, lo, 1o + count[0] - 1, d+1); sort R subarrays recursively
for (int r = 1; r < R; r++)
sort(a, aux, w, lo + count|[r-1], lo + count[r] - 1, d+1);

/

¥ at this place in code, count[r] = number of keys < r

sort a[lo..hi] assuming first d
characters already match

29

Variable-length strings

Useful trick. Treat strings as if they had an extra char at end (smaller than any char).

S h e | -1

S h e | -1 7 "she" before "shells"
S h e 1 | s | -1

S h o) r e | -1

private static int charAt(String s, int d)

1
if (d < s.length()) return s.charAt(d);

else return -1;

C strings. Terminated with null character ('\0') = no extra work needed.

30

Radix sorting: quiz 3

For which family of inputs is MSD sort likely to be faster than LSD sort?

A. Random strings.
B. All equal strings.
C. Both A and B.

D. Neither A nor B.

random all equal
1 EI10402] DNB3 77
] HYL490] DNB377
] ROZ572] DNB3 77
2HXE734] DNB3 77
21 YE230] DNB377
2 XOR 846] DNB377
3CDB573] DNB377
3CVP720] DNB377
31GJ319] DNB377
SKNA382] DNB3 77
3TAVS879] DNB377
4 CQP 781] DNB3 77
4 QG 234] DNB377
]

4YHV229 DNB377

MSD string sort: performance

Observation. MSD examines just enough character to sort the keys.

Proposition. For random strings, MSD examines ©(n log n) characters.

Remark. This can be sublinear in the input size ®(n w).

Proposition. In the worst case, MSD requires O(n + wR) extra space.

random all equal
1 E] DNB377
1 H] DNB377
1 R] DNB377
2 H] DNB377
2 |] DNB3 77
2 X] DNB3 77
3CD] DNB3 77
3CV] DNB377
3 |] DNB377
3 K] DNB377
3T] DNB377
4 C] DNB3 77
4 Q] DNB3 77
]

4'Y DNB377

Summary of the performance of sorting algorithms

Frequency of calls to compareTo() and charAt().

m guarantee m extra space stable? operations on keys

insertion sort 5 n? V4 n? O(1) compareTo()
mergesort nlog, n nlog, n O(n) v compareTo()
quicksort 1.39nlog, n" 1.39nlog,n O(log n) compareTo()
heapsort 2nlog,n 2nlog,n O(1) compareTo()
LSD sort t 2wn 2wn O+ R) v charAt()
MSD sort # 2wn nlogpn Or+wR) v charAt()
T
but can make ®(wnR) * probabilistic
array accesses T fixed-length w keys

(n /2 pairs of duplicate keys) + average-length w keys

Engineering a radix sort (American flag sort)

Optimization 0. Cutoff to insertion sort.

« MSD is much too slow for small subarrays.

- Essential for performance.

Optimization 1. Replace recursion with explicit stack.

« Push subarrays to be sorted onto stack.

« One count[] array now suffices.

Optimization 2. Do R-way partitioning in place.

« Eliminates aux[] array.

 Sacrifices stability.

American national flag problem

Dutch national flag problem

Engineering Radix Sort
Peter M. Mcllroy and Keith Bostic

University of California at Berkeley;
and M. Douglas Mcllroy
AT&T Bell Laboratories

ABSTRACT: Radix sorting methods have excellent
asymptotic performance on string data, for which com-
parison is not a unit-time operation. Attractive for use
in large byte-addressable memories, these methods
have nevertheless long been eclipsed by more easily
programmed algorithms. Three ways to sort strings by
bytes left to right—a stable list sort, a stable two-array
sort, and an in-place “American flag” sort—are illus-
trated with practical C programs. For heavy-duty sort-
ing, all three perform comparably, usually running at
least twice as fast as a good quicksort. We recommend
American flag sort for general use.

5.1 STRING SORTS

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE } 3'Way radix qUiCl(SOrf

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

3-way string quicksort

Overview.
- Partition array into 3 subarrays according to first character of pivot. - use Dijkstra 3-way partitioning algorithm
. Recursively sort 3 subarrays. <« exclude first character when sorting middle subarray (since known to be equal)
<
<[
y > 3
partition array —
into 3 subarrays sV =V
> <[
< <
., <
<, I

ANV A
o B B

A

recursively sort 3 subarrays

V A
< <

Il
<

[l
<

ANV ANV
Sl B B

A
<

3-way string quicksort: trace of recursive calls

pivot
Ghe k//////z;;//Kjiiif::::::;;;:\\\‘\\ are are
sells are \ bly \\ W\) by
seashells seashells s@ashells se@shells seaghells
by she she salls sea
the seashells seashells seashells seashells
sea sea sea sea sdlls
shore shore shore sells sdlls
the surely surely shells shells
shells shells shells she she
she she she surely durely
sells sells sells shore shore
are SF11S sp11s she she
surely the the the the
seashells the the the the

Trace of first few recursive calls for 3-way string quicksort (subarrays of length 1 not shown)

3-way string quicksort: Java implementation

private static void sort(String[] a)
{ sort(a, 0, a.length - 1, 0); }

private static void sort(String[] a, int lo, int hi, 1nt d)

{

if (hi <= 1o0) return; - subarrays of length O or 1
int pivot = charAt(allo], d);

Dijkstra 3-way partitioning
(using character at index d)

int ¢ = charAt(al1], d);

sort(a, lo, 1t-1, d); sort 3 subarrays recursively
if (pivot != -1) sort(a, 1t, gt, d+1):
sort(a, gt+l, hi, d);

sort a[lo..hi] assuming first d
characters are equal

38

3-way string quicksort vs. competitors

3-way string quicksort vs. MSD sort.
 In-place; short inner loop; cache-friendly.
- Not stable.

3-way string quicksort vs. standard quicksort.
« Typically uses ~2n1nn character compares (instead of ~2#nIn n string compares).

- Faster for keys with long common prefixes (and this is a common case!)

Fast Algorithms for Sorting and Searching Strings

Jon L. Bentley* Robert Sedgewick#

Abstract that is competitive with the most efficient string sorting
programs known. The second program is a symbol table
implementation that is faster than hashing, which is com-
monly regarded as the fastest symbol table implementa-
tion. The symbol table implementation is much more

QA
75.5
S15

We present theoretical algorithms for sorting and
searching multikey data, and derive from them practical C
implementations for applications in which keys are charac-
ter strings. The sorting algorithm blends Quicksort and
radix sort; it is competitive with the best known C sort
codes. The searching algorithm blends tries and binary

QA
75.5
W6
1989

library of Congress call numbers

space-efficient than multiway trees, and supports more
advanced searches.

Bottom line. 3-way string quicksort is often the method of choice for sorting strings.

39

Summary of the performance of sorting algorithms

Frequency of calls to compareTo() and charAt().

m guarantee m extra space stable? operations on keys

insertion sort

mergesort

quicksort

heapsort

LSD sort f

MSD sort #

3-way string
quicksort

15 n?

nlog, n

1.39nlog,n

2 nlog, n

2wn

2wn

1.39wnlog, R™

V4 n?

nlog, n

1.39nlog,n"

2 nlog, n

2wn

nlogpn

1.39nlog,n~

O(1)

O(n)

O(log n)

O(1)

O+ R)

O +wR)

O(ogn+w)*

compareTo()

v compareTo()

compareTo()

compareTo()

v charAt()

v charAt()

charAt()

* probabilistic

T fixed-length w keys
+ average-length w keys

40

5.1 STRING SORTS

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

» suffix arrays

https://algs4.cs.princeton.edu

Keyword-in-context search

Given a text of n characters, preprocess it to enable fast substring search

(find all occurrences of query string and surrounding context).

~/Desktop/51radix> java KWIC tale.txt 15 ~/Desktop/51radix> more tale.txt
search 1t was the best of times

o st giless to search for contraband 1t was the worst of times

her unavailing search for your fathe 1t was the age of wisdom
le and gone 1n search of her husband 1t was the age of foolishness
t provinces in search of impoverishe 1t was the epoch of belief
dispersing in search of other carri 1t was the epoch of incredulity
n that bed and search the straw hold 1t was the season of light

1t was the season of darkness
the epoch 1t was the spring of hope
1shness 1t was the epoch of belief 1t w 1t was the winter of despair

belief 1t was the epoch of incredulity

Applications. Linguistics, databases, web search, word processing,

Suffix sort

input string

T wa s w

twasbes t 1

.i

sort suffixes to bring query strings together

form suffixes

=

n =

gy] n =
= = 4] n
n + = = 4]
o} = - n + =
= n = ¥ © - +
+J T un un = = +J r—
- = @© H n = 0 +
+J P = O = @© nn n
wn - 2 0 N P = c O =)
) $ — © © n = n own o =
o = n ¥ = = U r + @© n wn
n n v v £ 2 O P =+ = = T (O
@ @ QO V" 0N n n & &2 P = = =
=
n =
G n =
= © »n =
Y =T © n =
—r + = © n =
Y - < = © n =
wn £ - & = © n =
Vv P - P = © n =
O O n ¢ - P = © n =
w o v n ¢ - P = © n =
@ N O VUV n £~ & = © n =
= © WO U wn Hdrr P = ©c n =
$ =T © O UV n - P = ©C n =
— £ = © NV O VvV n £ - £ = © N =

array of suffix indices

43

(in sorted order)

Keyword-in-context search: suffix-sorting solution

suffix sort the text.

« Preprocess:

« Query: binary search for query; scan until mismatch.

KWIC search for “search” in Tale of Two Cities

| | | m © O T U -~ ©O | « wn
T T > = € € ¢ € . — &£ @© wn
c U + | @ +£ @®@ w»v « O S Y4 @
T +£ € W O @ O -~ ©@ & 0 UV o
| @V ®© ®© Y~ wn « U | © T |
L - = = < | S O = © |
Vv — | ¥ L > « @© | r—
+ | | O © > O ¥ L« O & L©
Y n Y4 © O O L« O € ¢ © ®© -
 m O =T U > 0 E ¥ wn - T
— | | | | | € -— O | X © <
| . n wn « <« _ v L £ W
> n n n 0 0 Y% Y- Y c©c © |
E v ¥V vV %~ 4~ O O O ¥ £ © |
|« | | | | | € ©
T < ¢ ¢ € € € € € € T © |
v u n v U U U U U VU W | @
— £ £ £ L L L L L. . L n wn
@ ®©@ © ® © © © © © @© @ @©
v 9 9 0 O ® 0 U O @ U U QO
n »n N " “u "»u N v “u N nu un un

P Y =

2|2 R & » &

nn S ® < o

< = A <

H

<

b r o u g

d

d

S € a S €

44

Radix sorting: quiz 4

How much memory as a function of n?

String[] suffixes = new String[n];
for (int 1 = 0; 1 < n; 1++)
suffixes[1] = s.substring(i, n);

Arrays.sort(suffixes);

A. O(1)
B. O()
C. O(nlogn)

D. O®®?

3"d printing (2012)

45

http://algs4.cs.princeton.edu

Algorithms 4/e fail

Q. How to efficiently form (and sort) the n suffixes?

String[] suffixes = new String[n];
for (int 1. =0; 1 < n; 1++)
suffixes[1] s.substring(i, n);

Algorithms

Arrays.sort(suffixes);

3"d printing (2012)

m

amendments. txt 0.25 sec 2.0 sec
aesop.txt 192 K 1.0 sec out Ofmemary
_ ®(n?) time and space
mobydick. txt 1.2 M /.6 sec out Ofmemory < to form suffixes!

chromosomell. txt /.1 M 61 sec out of memory

http://algs4.cs.princeton.edu

The String data type: Java 7ué implementation

public final class String implements Comparable<String>

{

private char[] value;
private int hash;

String s = "Hello, World";

valuel[] H E L L O : W O R L

String t = s.substring(7, 12);

(allocates new char[] array = linear extra memory)

value[] W 0 R L D

47

The String data type: Java 7u5 implementation

public final class String implements Comparable<String>
{

private char[] value;

private int offset;

private int length;

private 1nt hash;

String s = "Hello, World"; length =12

valuel[] H E L L O : W O R L

T

offset =0

String t = s.substring(7, 12);

(reuses original char[] array = constant extra memory) length = 5

valuel[] H E L L O : W O R L

T

offset =7

The String data type: performance summary

String data type (in Java). Sequence of characters (immutable).

Java 7u5. Immutable char[]

Java 7u6. Immutable char[]

length

indexing

concatenation

substring extraction

immutable?

memory

array, offset, length, hash cache.

array, hash cache.

1 1

1 1
m-+n m-+n

4 v

49

A Reddit exchange

I'm the author of the substring() change. As has
been suggested 1n the analysis here there were two
motivations for the change
e Reduce the si1ze of String instances. Strings are
typically 20-40% of common apps footprint.
e Avoid memory leakage caused by retained
substrings holding the entire character array.

Changing this function, 1n a bugfix release no
less, was totally 1rresponsible. It broke backwards
compatibility for numerous applications with errors
that didn't even produce a message, just freezing
and timeouts... All pain, no gain. Your work was
not just vailn, 1t was thoroughly destructive, even
beyond 1ts 1mmediate effect.

bondolo

cypherpunks

50

http://www.reddit.com/r/programming/comments/1qw73v/til_oracle_changed_the_internal_string

Suffix sort

Q. How to efficiently form (and sort) suffixes in Java 7u6?

A. Define Suffix class a la Java 7u5 String representation.

public class Suffix implements Comparable<Suffix>

{
private final String text;
private final int offset;
public Suffix(String text, int offset) {
this.text = text;
this.offset = offset;
}
public 1int lTength() { return text.length() - offset; }
public char charAt(int 1) { return text.charAt(offset + 1):; }
public int compareTo(Suffix that) { }
}
text[] H E L L 0 , W 0] R L D

offset

Suffix sort

Q. How to efficiently form (and sort) suffixes in Java 7u6?

A. Define Suffix class a la Java 7u5 String representation.

Suffix|| suffixes = new Suffix|[n];
for (Aint 1 =0; 1 < n; 1++)
suffixes|[i] new Suffix(s, 1);

Algorithms

Arrays.sort(suffixes);

ROBERT SEDGEWICK | KEVIN W AYNE

4™ printing (2013)

Optimizations. [5% faster and 32X% less memory than Java 7u5 version]
« Use 3-way string quicksort instead of Arrays.sort().

- Manipulate suffix offsets directly instead of via explicit Suffix objects.

52

http://algs4.cs.princeton.edu

Suffix arrays: theory

Conjecture. Impossible to compute suffix array in ©(n) time.

Proposition. Can solve in ®(») time (suffix trees).

“ has no practical virtue... but a historic

monument in the area of string processing. ”
A Space-Economical Suffix Tree Construction Algorithm

LINEAR PATTERN MATCHING ALGORITHMS

EDWARD M. MCCREIGHT

Peter Weiner Xeroxz Palo Alto Research Center, Palo Alto, California

*
The Rand Corporation, Santa Monica, California) _ L
ABSTRACT. A new algorithm 1s presented for constructing auxiliary digital search trees to aid in

exact-match substring searching. This algorithm has the same asymptotic running time bound as

previously published algorithms, but is more economical in space. Some implementation considera-

tions are discussed, and new work on the modification of these search trees in response to ineremental
Abstract changes in the strings they index (the update problem) is presented.

In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching
in linear time. Related problems, such as those discussed in [4], have pre-
viously been solved by efficient but sub-optimal algorithms. In this paper, we
introduce an interesting data structure called a bi-tree. A linear time algo-
rithm for obtaining a compacted version of a bi-tree associated with a given

string is presented. With this construction as the basic tool, we indicate how On—line COHStI‘UCtiOH Of SUfﬁX trees 1
to solve several pattern matching problems, including some from [4], in linear
time.

Esko Ukkonen

Department of Computer Science, University of Helsinki,
P. O. Box 26 (Teollisuuskatu 23), FIN-00014 University of Helsinki, Finland
Tel.: +358-0-7084172, fax: +358-0-7084441

Email: ukkonen@cs.Helsinki.FI

Suffix arrays: practice

Applications.

Bioinformatics, information retrieval, data compression,

Many ingenious algorithms.

Constants and memory footprint very important.

. State-of-the art still changing.

1991

1999

2003

2003

2008

2010

Manber-Myers

Larsson-Sadakane

Karkkainen-Sanders

Ko-Aluru

divsufsort2

sais

nlogn

nlogn

nlogn

8n

13 n

10 n

5n

6n

«—— see |lecture videos

about 10x faster

than Manber—-Myers

good choices
(libdivsufsort)

54

String sorting summary

We can develop linear-time sorts.
- Key compares not necessary for string keys.

- Use characters as index in an array.

We can develop sublinear-time sorts.
« Input size = total number of characters (not number of strings).

« Not all of the characters have to be examined.

Long strings are rarely random in practice.
- Goal is often to learn the structure!

- May need specialized algorithms.

5' 3!
mRNA JJ—JW

codons AUGACGGAGCUUCGGAGCUAG

55

© Copyright 2022 Robert Sedgewick and Kevin Wayne

© Copyright 2022 Robert Sedgewick and Kevin Wayne

