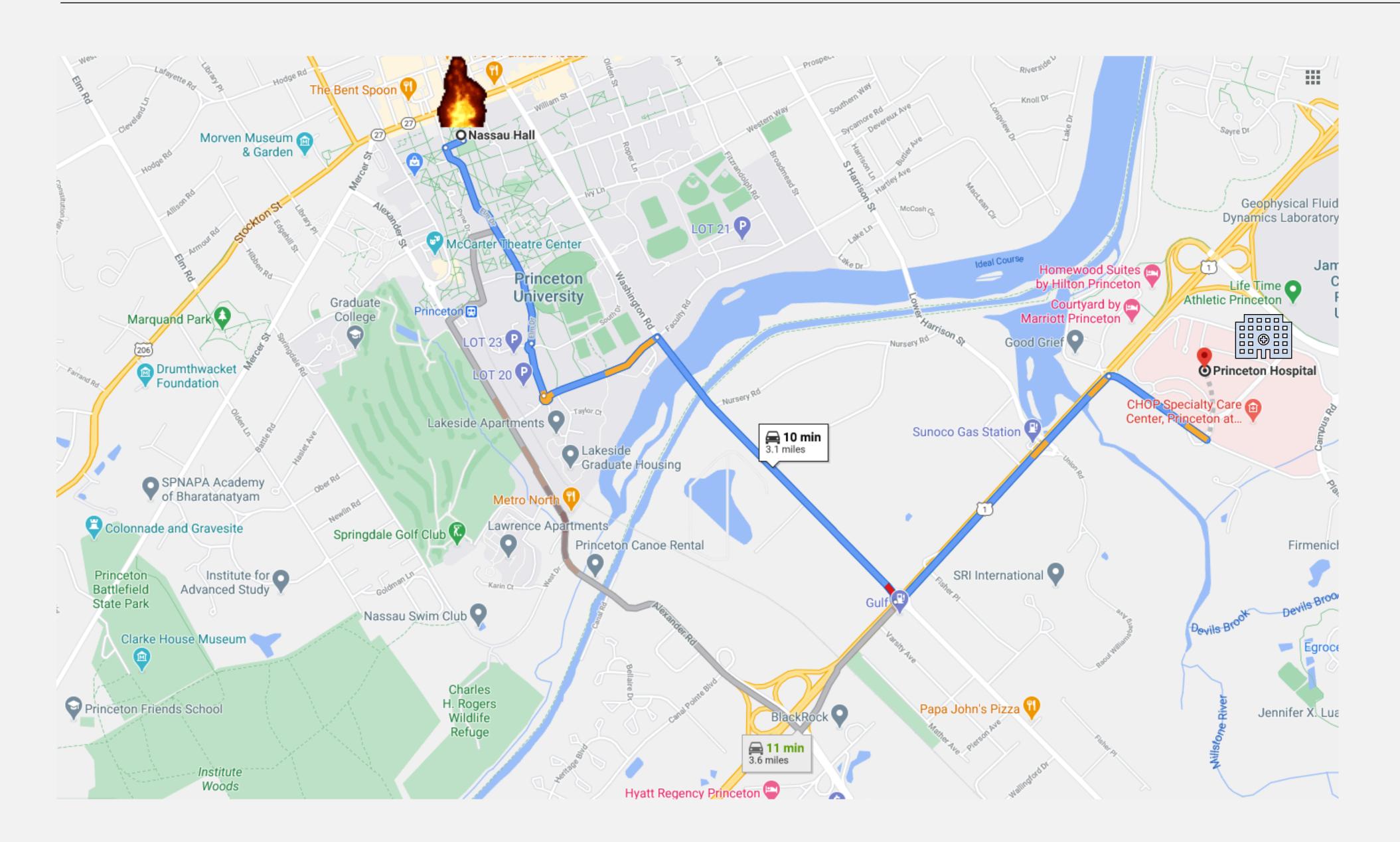
Algorithms

Google maps

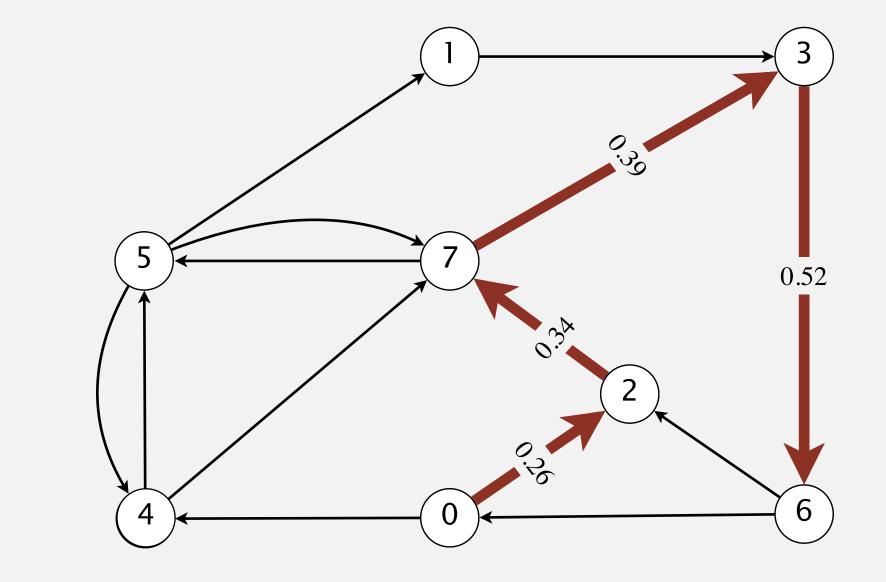


Shortest path in an edge-weighted digraph

Given an edge-weighted digraph, find a shortest path from one vertex to another vertex.

edge-weighted digraph

4->5	0.35	
5->4	0.35	
4->7	0.37	
5->7	0.28	
7->5	0.28	
5->1	0.32	
0->4	0.38	
0->2	0.26	
7->3	0.39	
1->3	0.29	
2->7	0.34	
6->2	0.40	
3->6	0.52	
6->0	0.58	
6->4	0.93	



shortest path from 0 to 6 $0 \rightarrow 2 \rightarrow 7 \rightarrow 3 \rightarrow 6$

length of path = 1.51(0.26 + 0.34 + 0.39 + 0.52)

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving. → see Assignment 6
- Texture mapping.
- Robot navigation.
- Typesetting in T_EX .
- Currency exchange.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- · Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Optimal truck routing through given traffic congestion pattern.

https://en.wikipedia.org/wiki/Seam_carving

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest path variants

Which vertices?

- Source-destination: from one vertex to another vertex.
- Single source: from one vertex to every vertex.
- Single destination: from every vertex to one vertex.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Non-negative weights.
 we assume this in today's lecture (except as noted)
- Euclidean weights.
- Arbitrary weights.

Directed cycles?

- Prohibit.
- Allow.

implies that shortest path from s to v exists (and that $E \ge V - 1$)

Simplifying assumption. Each vertex is reachable from s.

Shortest paths: quiz 1

Which variant in car GPS? Hint: drivers make wrong turns occasionally.

- A. Source-destination: from one vertex to another vertex.
- B. Single source: from one vertex to every vertex.
- C. Single destination: from every vertex to one vertex.
- D. All pairs: between all pairs of vertices.

Data structures for single-source shortest paths

Goal. Find a shortest path from s to every vertex.

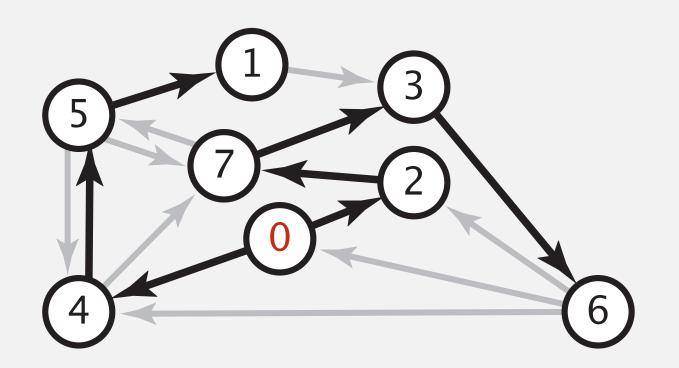
no repeated vertices
$$\Rightarrow \leq V-1$$
 edges

Observation 1. There exists a shortest path from s to v that is simple.

Observation 2. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent a SPT with two vertex-indexed arrays:

- distTo[v] is length of a shortest path from s to v.
- edgeTo[v] is last edge on a shortest path from s to v.



distTo[] edgeTo[]		edgeTo[]
0	0	null
1	1.05	5->1 0.32
2	0.26	0->2 0.26
3	0.97	7->3 0.37
4	0.38	0->4 0.38
5	0.73	4->5 0.35
6	1.49	3->6 0.52
7	0.60	2->7 0.34

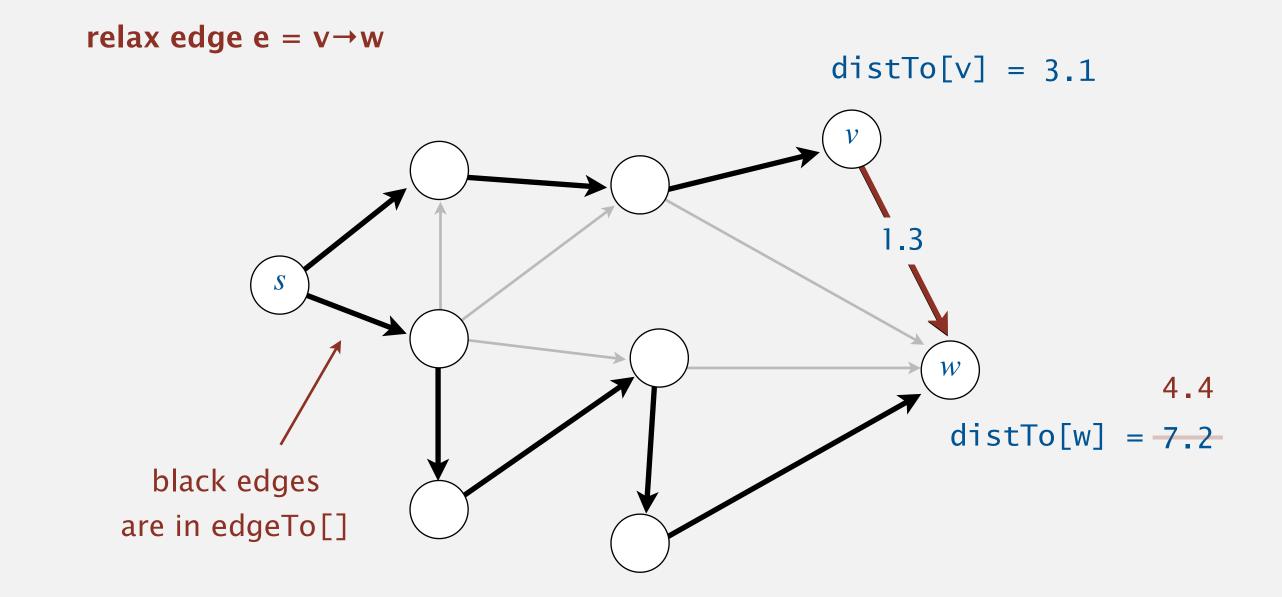
shortest-paths tree from 0

parent-link representation

Edge relaxation

Relax edge $e = v \rightarrow w$.

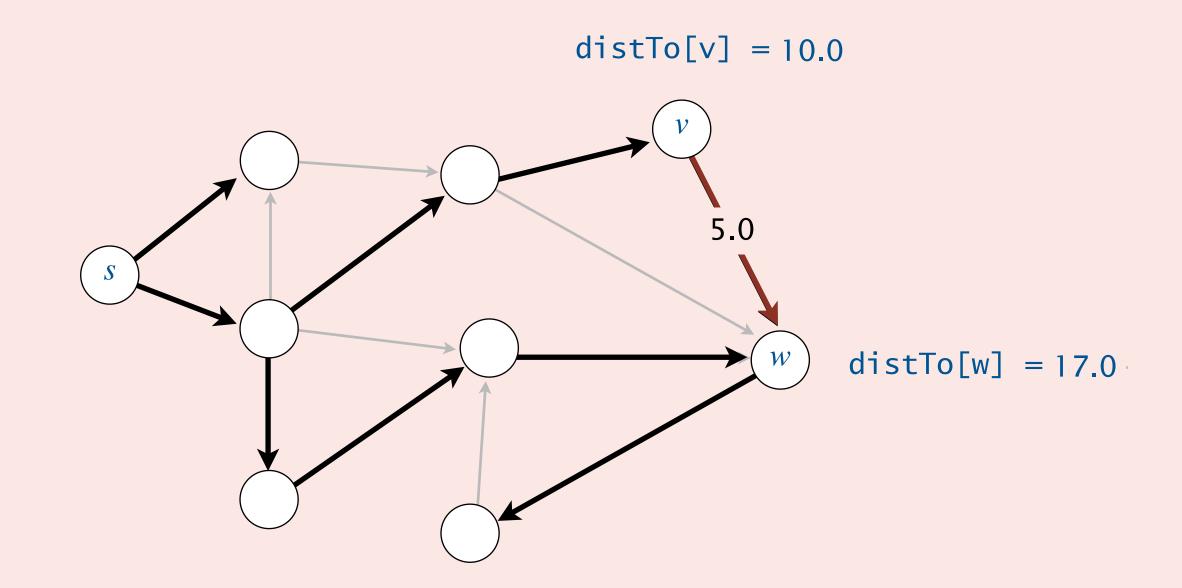
- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ yields shorter path from s to w, via v, update distTo[w] and edgeTo[w].



Shortest paths: quiz 2

What are the values of distTo[v] and distTo[w] after relaxing edge $e = v \rightarrow w$?

- A. 10.0 and 15.0
- **B.** 10.0 and 17.0
- C. 12.0 and 15.0
- D. 12.0 and 17.0



Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

```
For each vertex v: distTo[v] = \infty.
```

For each vertex v: edgeTo[v] = null.

distTo[s] = 0.

Repeat until distTo[v] values converge:

- Relax any edge.

Key properties. Throughout the generic algorithm,

- distTo[v] is either infinity or the length of a (simple) path from s to v.
- distTo[v] does not increase.

Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: $distTo[v] = \infty$.

For each vertex v: edgeTo[v] = null.

distTo[s] = 0.

Repeat until distTo[v] values converge:

- Relax any edge.

Efficient implementations.

- Which edge to relax next?
- How many edge relaxations needed to guarantee convergence?
- Ex 1. Bellman-Ford algorithm.
- Ex 2. Dijkstra's algorithm.
- Ex 3. Topological sort algorithm.

Weighted directed edge API

Relaxing an edge $e = v \rightarrow w$.

```
private void relax(DirectedEdge e)
{
  int v = e.from(), w = e.to();
  if (distTo[w] > distTo[v] + e.weight())
  {
     distTo[w] = distTo[v] + e.weight();
     edgeTo[w] = e;
  }
}
```

$$4.4$$

$$distTo[v] = 3.1$$

$$distTo[w] = 7.2$$

$$v$$

$$1.3$$

Weighted directed edge: implementation in Java

API. Similar to Edge for undirected graphs, but a bit simpler.

```
public class DirectedEdge
   private final int v, w;
   private final double weight;
   public DirectedEdge(int v, int w, double weight)
     this.v = v;
     this.w = w;
     this.weight = weight;
   public int from()
                                                                      from() and to() replace
   { return v; }
                                                                      either() and other()
   public int to()
   { return w; }
   public double weight()
   { return weight; }
```

Edge-weighted digraph API

API. Same as EdgeWeightedGraph except with DirectedEdge objects.

public class	EdgeWeightedDigraph	
	EdgeWeightedDigraph(int V)	edge-weighted digraph with V vertices
void	addEdge(DirectedEdge e)	add weighted directed edge e
Iterable <directededge></directededge>	adj(int v)	edges incident from v
int	V()	number of vertices
	•	•

Edge-weighted digraph: adjacency-lists implementation in Java

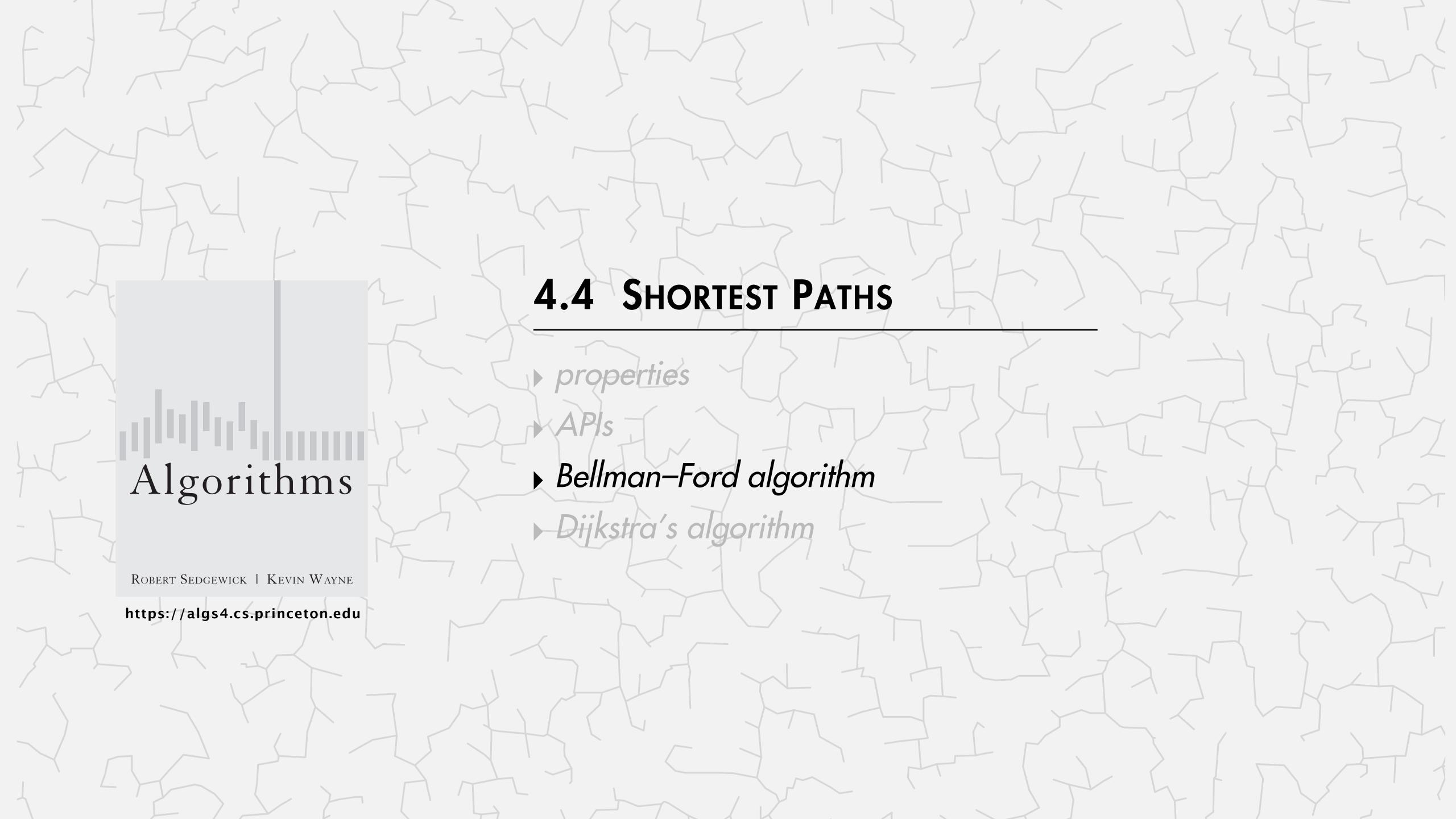
Implementation. Almost identical to EdgeWeightedGraph.

```
public class EdgeWeightedDigraph
   private final int V;
   private final Bag<DirectedEdge>[] adj;
  public EdgeWeightedDigraph(int V)
    this.V = V;
    adj = (Bag<Edge>[]) new Bag[V];
    for (int v = 0; v < V; v++)
       adj[v] = new Bag<>();
   public void addEdge(DirectedEdge e)
     int v = e.from();
                                                              add edge e = v \rightarrow w to
                                                              only v's adjacency list
     adj[v].add(e);
   public Iterable<DirectedEdge> adj(int v)
   { return adj[v]; }
```

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

public class	SP	
	SP(EdgeWeightedDigraph G, int s)	shortest paths from s in digraph G
double	<pre>distTo(int v)</pre>	length of shortest path from s to v
Iterable <directededge></directededge>	pathTo(int v)	shortest path from s to v
boolean	hasPathTo(int v)	is there a path from s to v?



Bellman-Ford algorithm

Bellman-Ford algorithm

For each vertex v: $distTo[v] = \infty$.

For each vertex v: edgeTo[v] = null.

distTo[s] = 0.

Repeat V-1 times:

Relax each edge.

```
private void relax(DirectedEdge e)
{
  int v = e.from(), w = e.to();
  if (distTo[w] > distTo[v] + e.weight())
  {
     distTo[w] = distTo[v] + e.weight();
     edgeTo[w] = e;
  }
}
```

```
for (int i = 1; i < G.V(); i++)

for (int v = 0; v < G.V(); v++)

for (DirectedEdge e : G.adj(v))

relax(e);

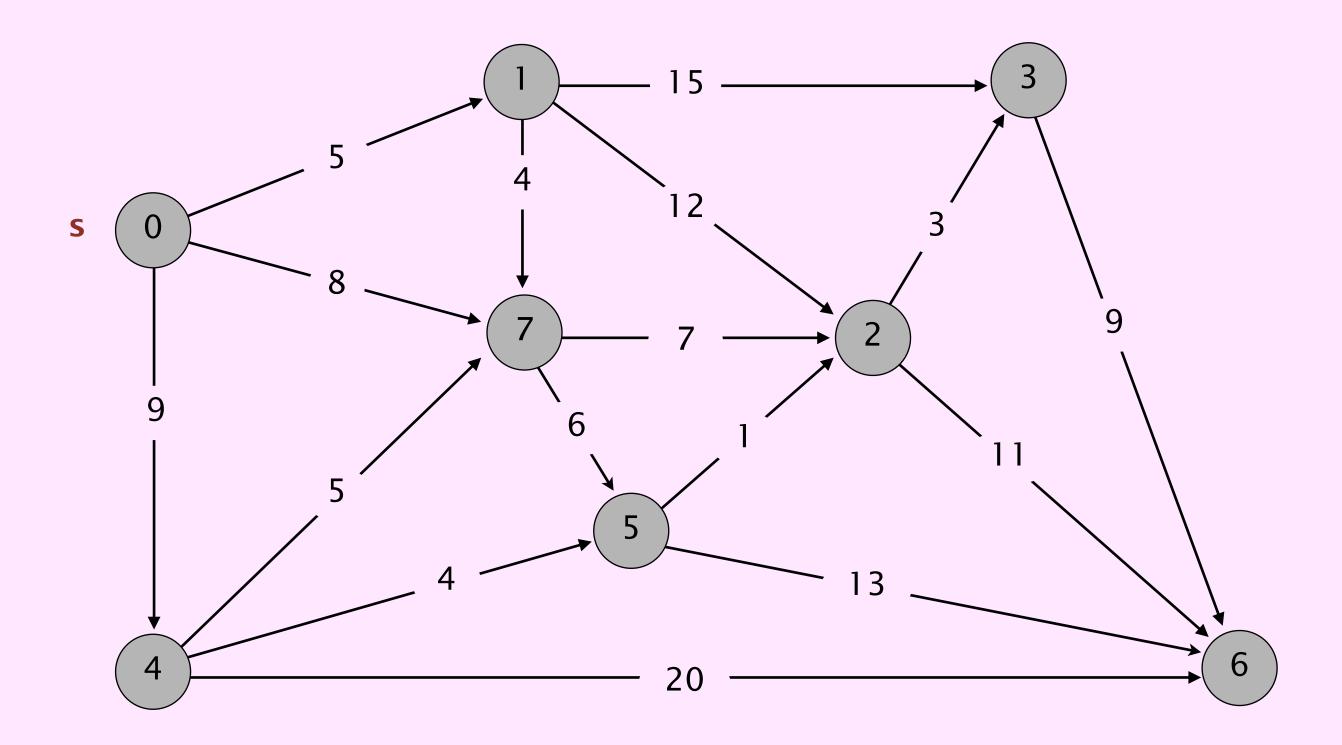
pass i (relax each edge once)
```

```
number of calls to relax() in pass i =
outdegree(0) + outdegree(1) + outdegree(2) + ... = E
```

Running time. Algorithm takes $\Theta(E|V)$ time and uses $\Theta(V)$ extra space.

Bellman-Ford algorithm demo

Repeat V-1 times: relax all E edges.

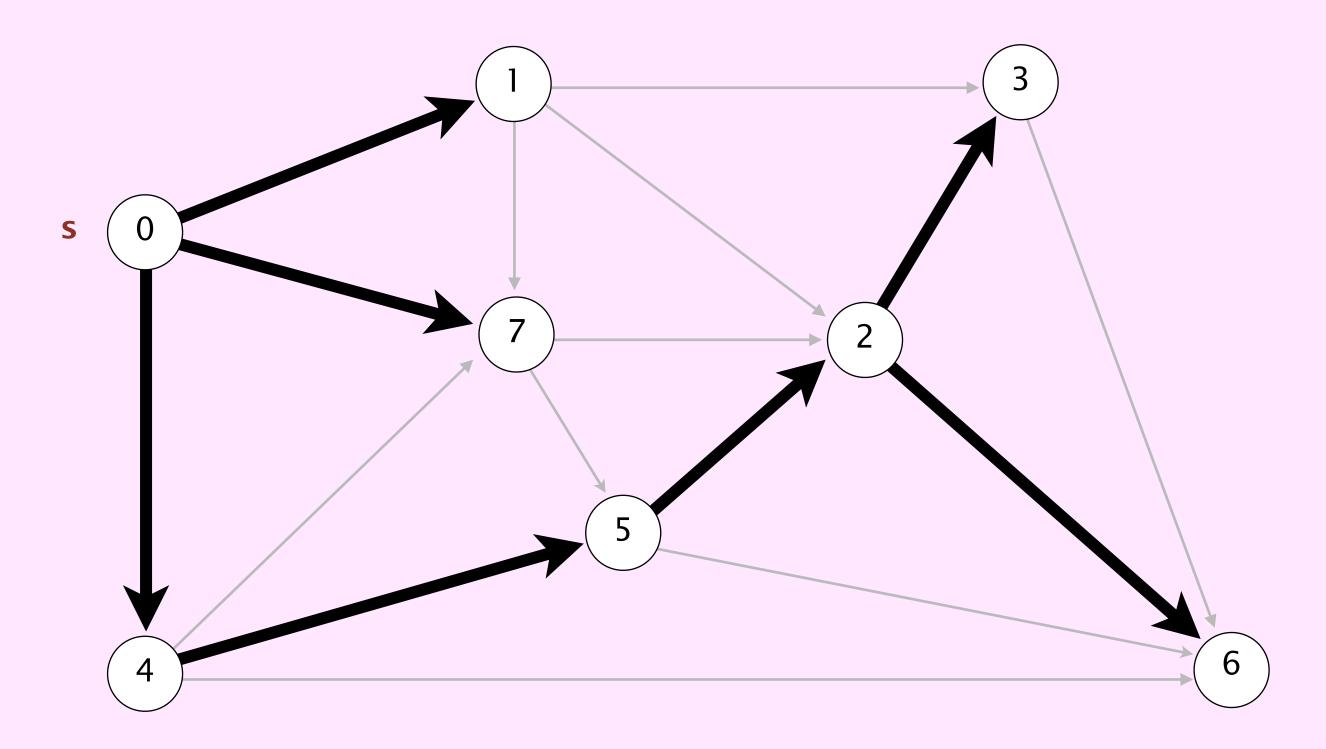


an edge-weighted digraph

0→1 5.0 9.0 0→4 0→7 8.0 1→2 12**.**0 $1\rightarrow 3$ 15.0 1→7 4.0 3.0 2→3 2→6 11.0 3→6 9.0 4→5 4.0 4→6 20.0 5.0 4→7 5→2 1.0 5→6 13**.**0 7→5 6.0 7→2 7.0

Bellman-Ford algorithm demo

Repeat V-1 times: relax all E edges.



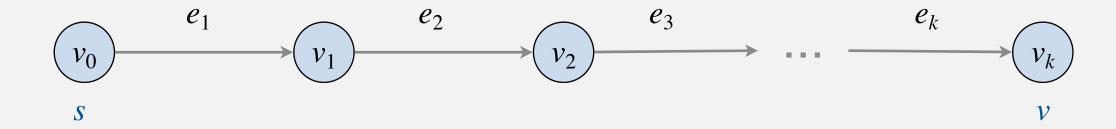
distTo[]	edgeTo[]
0.0	_
5.0	0→1
14.0	5→2
17.0	2→3
9.0	0→4
13.0	4→5
25.0	2→6
8.0	0→7
	0.0 5.0 14.0 17.0 9.0 13.0 25.0

shortest-paths tree from vertex s

Bellman-Ford algorithm: correctness proof

Proposition. Let $s = v_0 \rightarrow v_1 \rightarrow ... \rightarrow v_k = v$ be any path from s to v containing k edges.

Then, after pass k, distTo[v_k] $\leq weight(e_1) + weight(e_2) + \cdots + weight(e_k)$.



Pf. [by induction on number of passes *i*]

- Base case: initially, $0 = distTo[v_0] \le 0$.
- Inductive hypothesis: after pass i, distTo[v_i] $\leq weight(e_1) + weight(e_2) + \cdots + weight(e_i)$.
- This inequality continues to hold because distTo[v_i] cannot increase.
- Immediately after relaxing edge e_{i+1} in pass i+1, we have

$$\mathsf{distTo}[v_{i+1}] \leq \mathsf{distTo}[v_i] + weight(e_{i+1}) \longleftarrow \mathsf{edge} \ \mathsf{relaxation}$$

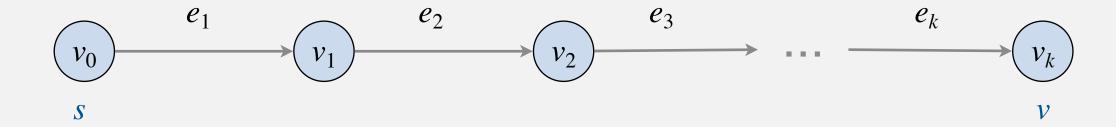
$$\leq weight(e_1) + weight(e_2) + \dots + weight(e_i) + weight(e_{i+1}). \longleftarrow \mathsf{inductive} \ \mathsf{hypothesis}$$

• This inequality continues to hold because distTo[v_{i+1}] cannot increase. \blacksquare

Bellman-Ford algorithm: correctness proof

Proposition. Let $s = v_0 \rightarrow v_1 \rightarrow ... \rightarrow v_k = v$ be any path from s to v containing k edges.

Then, after pass k, distTo[v_k] $\leq weight(e_1) + weight(e_2) + \cdots + weight(e_k)$.



Corollary. Bellman-Ford computes shortest path distances.

Pf. [apply Proposition to a shortest path from *s* to *v*]

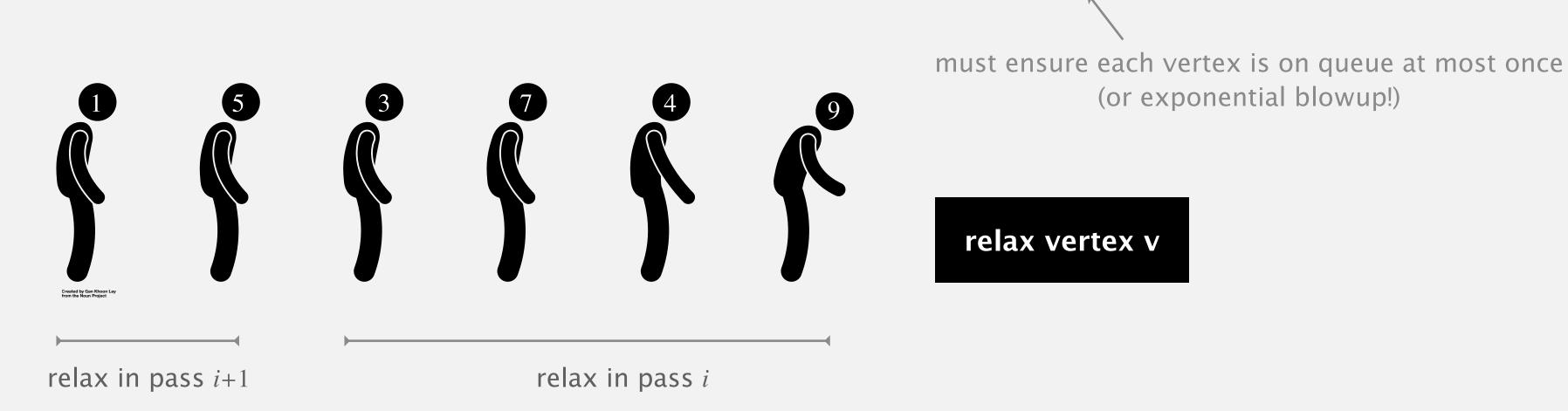
- There exists a simple shortest path P^* from s to v; it contains $k \le V 1$ edges.
- The Proposition implies that, after at most V-1 passes, distTo[v] $\leq length(P^*)$.
- Since distTo[v] is the length of some path from s to v, distTo[v] = $length(P^*)$.

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, not necessary to relax any edges incident from v in pass i + 1.

Queue-based implementation of Bellman-Ford.

- Perform vertex relaxations. \leftarrow relax vertex v = relax all edges incident from v
- Maintain queue of vertices whose distTo[] values changed since it was last relaxed.



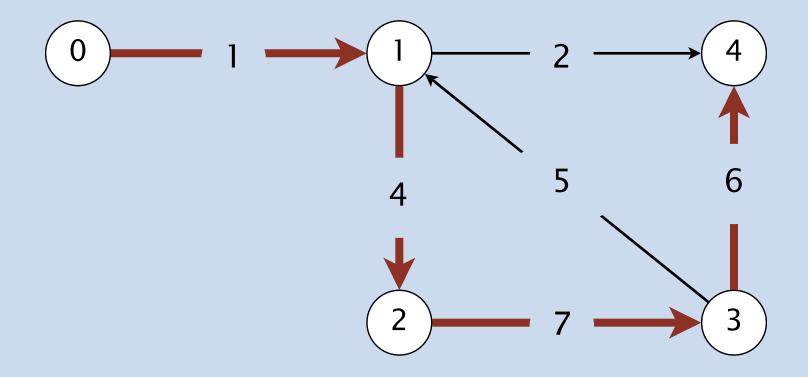
Impact.

- In the worst case, the running time is still $\Theta(E\ V)$.
- But much faster in practice on typical inputs.

LONGEST PATH

Problem. Given a digraph G with positive edge weights and vertex s, find a longest simple path from s to every other vertex.

Goal. Design algorithm that takes $\Theta(E\ V)$ time in the worst case.

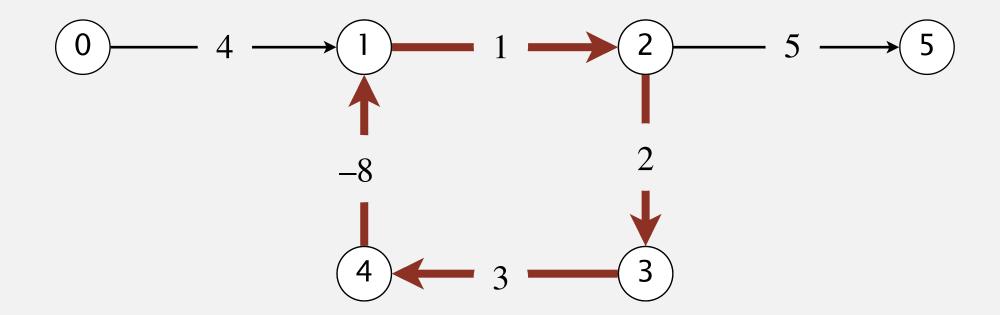


longest simple path from 0 to 4: $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$

Bellman-Ford algorithm: negative weights

Remark. The Bellman–Ford algorithm works even if some weights are negative, provided there are no negative cycles.

Negative cycle. A directed cycle whose length is negative.



length of negative cycle = 1 + 2 + 3 + -8 = -2

Negative cycles and shortest paths. Length of path can be made arbitrarily negative by using negative cycle.

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow \cdots \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 5$$

Edsger W. Dijkstra: select quote

Dijkstra's algorithm

Dijkstra's algorithm

For each vertex v: $distTo[v] = \infty$.

For each vertex v: edgeTo[v] = null.

 $T = \emptyset$.

distTo[s] = 0.

Repeat until all vertices are marked:

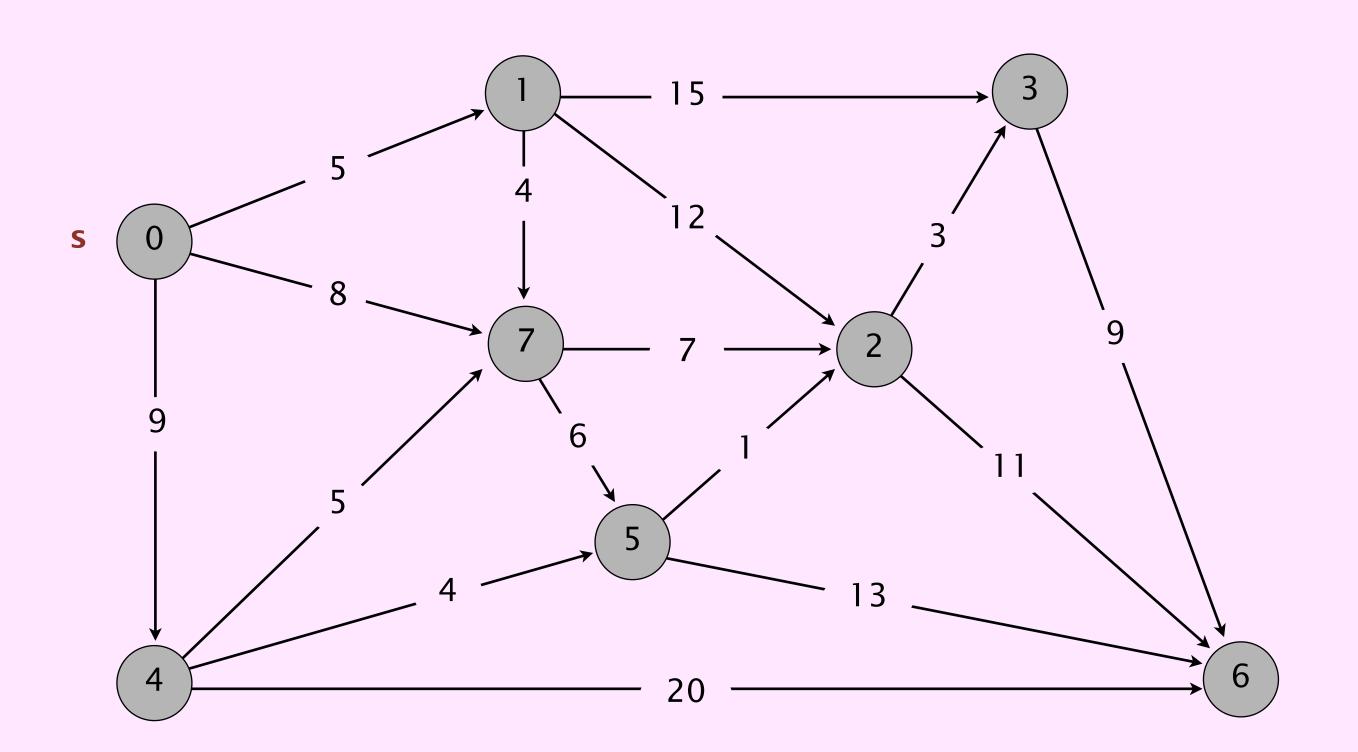
- Select unmarked vertex v with the smallest distTo[] value.
- Mark v.
- Relax each edge incident from v.

Key difference with Bellman-Ford. Each edge gets relaxed exactly once!

Dijkstra's algorithm demo

Repeat until all vertices are marked:

- Select unmarked vertex v with the smallest distTo[] value.
- Mark v and relax all edges incident from v.



 $0 \rightarrow 1$ 5.0 $0 \rightarrow 4$ 9.0 $0 \rightarrow 7$ 8.0 $1 \rightarrow 2$ 12.0

1→3 15**.**0

1→7 4.0

2→3 3.0

 $2\rightarrow6$ 11.0

3→6 9.0

4→5 4.0

4→6 20.0

4→7 5.0

5→2 1.0

5→6 13**.**0

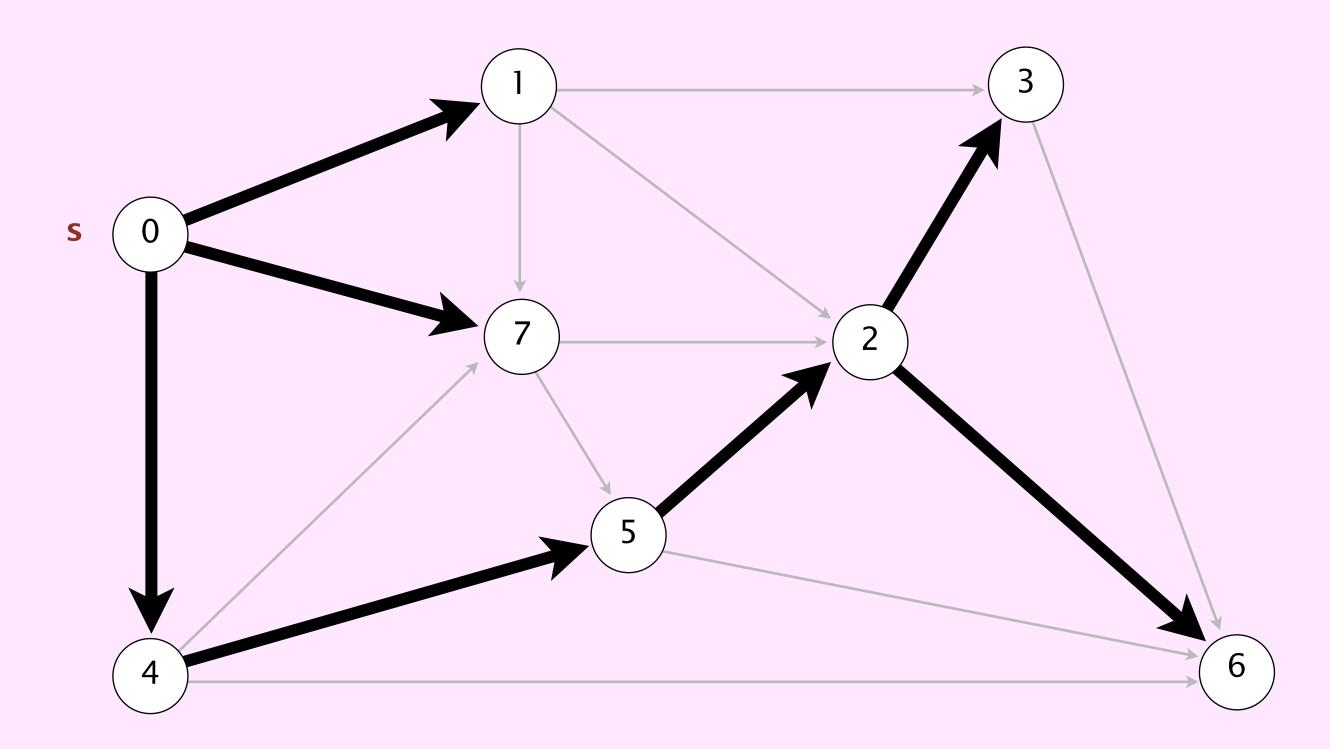
7→5 6.0

7→2 7**.**0

Dijkstra's algorithm demo

Repeat until all vertices are marked:

- Select unmarked vertex v with the smallest distTo[] value.
- Mark v and relax all edges incident from v.



V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

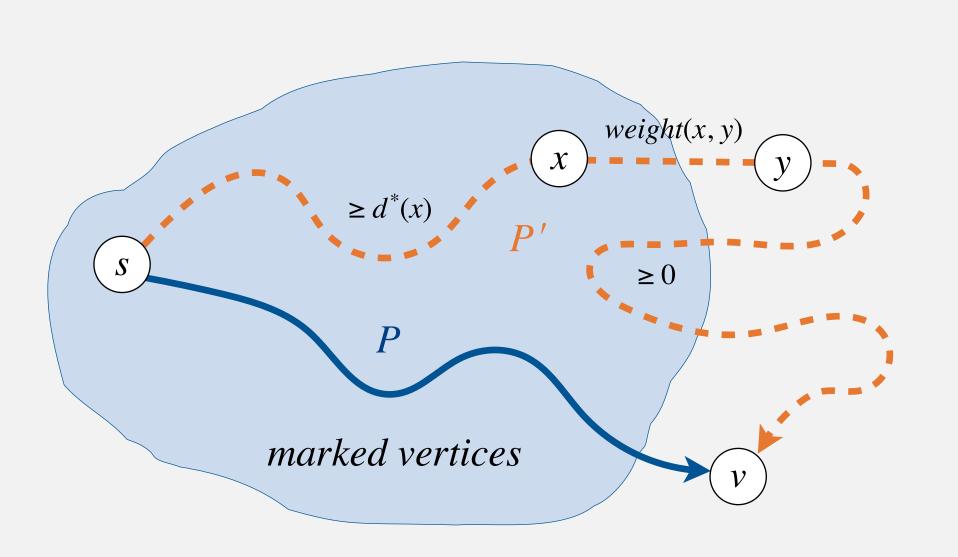
Dijkstra's algorithm: correctness proof

Invariant. For each marked vertex v: distTo[v] = $d^*(v)$.

length of shortest path from s to v

Pf. [by induction on number of marked vertices]

- Let v be next vertex marked.
- Let P be the path from s to v of length distTo[v].
- Consider any other path P' from s to v.
- Let $x \rightarrow y$ be first edge in P' with x marked and y unmarked.
- P' is already as long as P by the time it reaches y:



$$length(P) = distTo[v]$$

$$length(P) = distTo[v]$$

$$vinstead of y \longrightarrow \leq distTo[y]$$

$$vertex x is marked \\ (so it was relaxed) \longrightarrow \leq distTo[x] + weight(x, y)$$

$$induction \longrightarrow = d^*(x) + weight(x, y)$$

$$P' is a path from s to x, \longrightarrow \leq length(P') \quad \blacksquare$$

$$followed by edge x \rightarrow y,$$

$$followed by non-negative edges$$

Dijkstra's algorithm: correctness proof

Invariant. For each marked vertex v: distTo[v] = $d^*(v)$.

length of shortest path from s to v

Corollary 1. Dijkstra's algorithm computes shortest path distances.

Corollary 2. Dijkstra's algorithm relaxes vertices in increasing order of distance from s.

generalizes both
level-order traversal in a tree
and breadth-first search in a graph

Dijkstra's algorithm: Java implementation

```
public class DijkstraSP
   private DirectedEdge[] edgeTo;
   private double[] distTo;
                                                                   PQ that supports
   private IndexMinPQ<Double> pq;
                                                                  decreasing the key
                                                                     (stay tuned)
   public DijkstraSP(EdgeWeightedDigraph G, int s)
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
                                                                    PQ contains the
       pq = new IndexMinPQ<Double>(G.V()); ←
                                                                   unmarked vertices
                                                                with finite distTo[] values
      for (int v = 0; v < G.V(); v++)
         distTo[v] = Double.POSITIVE_INFINITY;
      distTo[s] = 0.0;
       pq.insert(s, 0.0);
      while (!pq.isEmpty())
                                                                relax vertices in order
          int v = pq.delMin();
                                                                 of distance from s
          for (DirectedEdge e : G.adj(v))
             relax(e);
```

Dijkstra's algorithm: Java implementation

When relaxing an edge, also update PQ:

- Found first path from s to w: add w to PQ.
- Found better path from s to w: decrease key of w in PQ.

Q. How to implement Decrease-Key operation in a priority queue?

Indexed priority queue (Section 2.4)

Associate an index between 0 and n-1 with each key in a priority queue.

- Insert a key associated with a given index.
- Delete a minimum key and return associated index.
- Decrease the key associated with a given index.

```
for Dijkstra's algorithm:

n = V,

index = vertex,

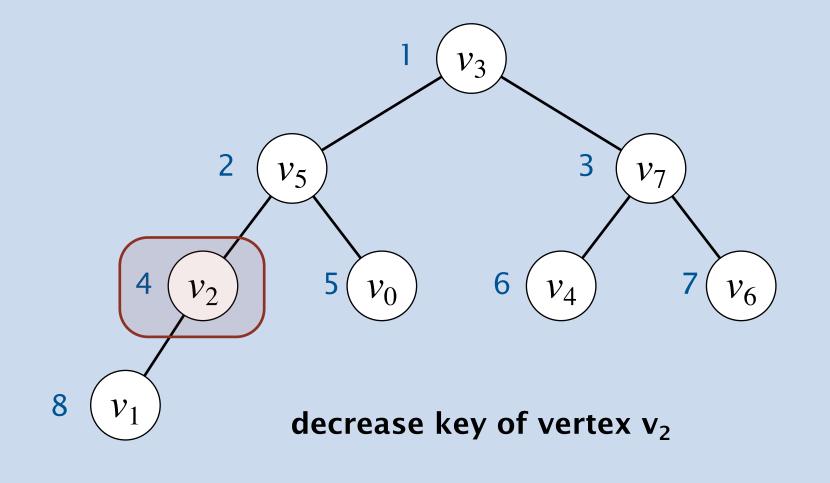
key = distance from s
```

```
public class IndexMinPQ<Key extends Comparable<Key>>
              IndexMinPQ(int n)
                                                      create PQ with indices 0, 1, ..., n-1
        void insert(int i, Key key)
                                                           associate key with index i
         int delMin()
                                                   remove min key and return associated index
        void decreaseKey(int i, Key key)
                                                     decrease the key associated with index i
     boolean isEmpty()
                                                          is the priority queue empty?
```

DECREASE-KEY IN A BINARY HEAP

Goal. Implement Decrease-Key operation in a binary heap.

pq[]
$$-v_3 v_5 v_7 v_2 v_0 v_4 v_6 v_1$$



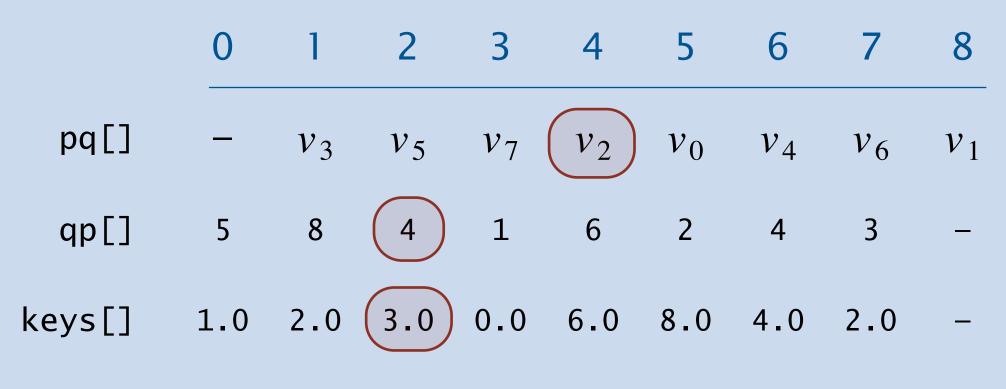
DECREASE-KEY IN A BINARY HEAP

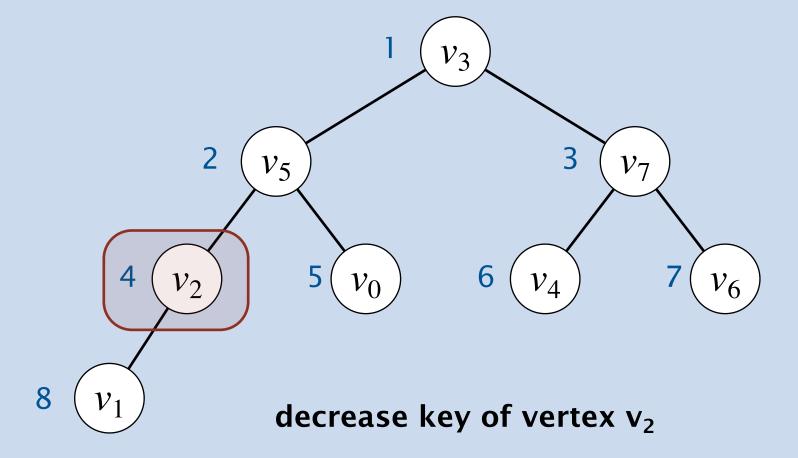
Goal. Implement Decrease-Key operation in a binary heap.

Solution.

- Find vertex in heap. How?
- Change priority of vertex and call swim() to restore heap invariant.

Extra data structure. Maintain an inverse array qp[] that maps from the vertex to the binary heap node index.





Dijkstra's algorithm: which priority queue?

Number of PQ operations: V INSERT, V DELETE-MIN, $\leq E$ DECREASE-KEY.

PQ implementation	Insert	Delete-Min	Decrease-Key	total
unordered array	1	V	1	V^2
binary heap	$\log V$	$\log V$	$\log V$	$E \log V$
d-way heap	$\log_d V$	$d \log_d V$	$\log_d V$	$E \log_{E/V} V$
Fibonacci heap	1	$\log V^{\dagger}$	1	$E + V \log V$

† amortized

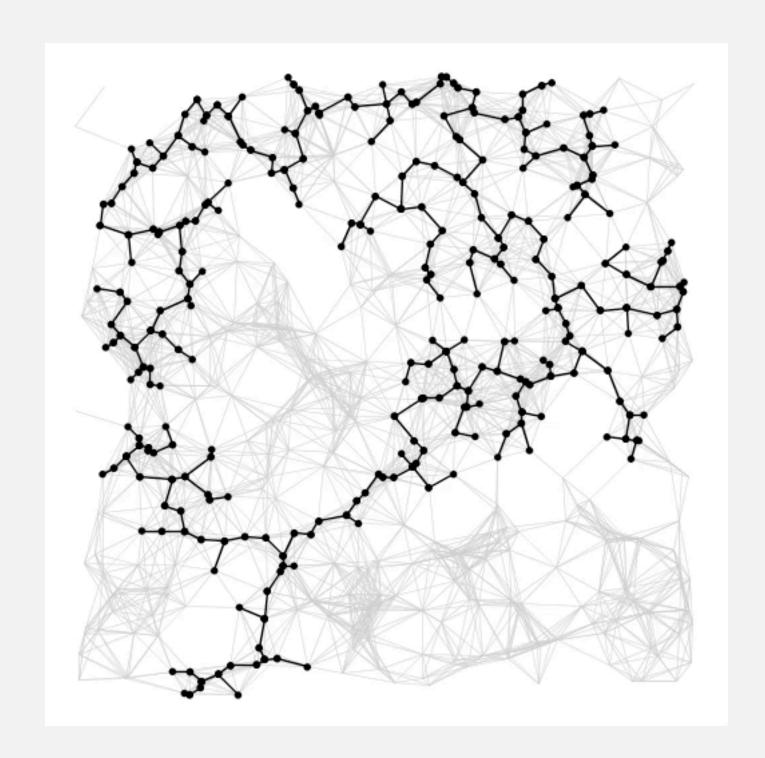
Bottom line.

- Array implementation optimal for complete digraphs.
- Binary heap much faster for sparse digraphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

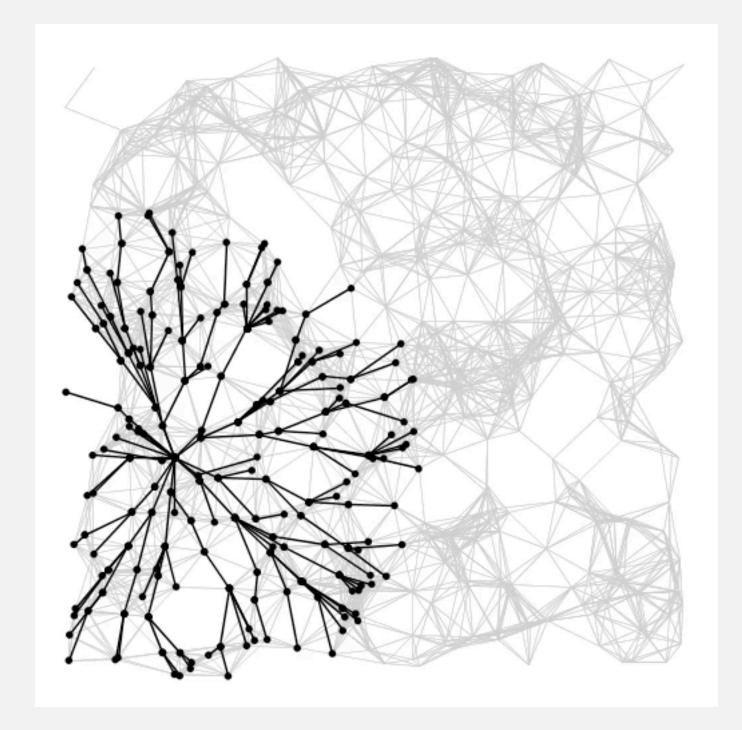
Priority-first search

Observation. Prim and Dijkstra are essentially the same algorithm.

- Prim: Choose next vertex that is closest to any vertex in the tree (via an undirected edge).
- Dijkstra: Choose next vertex that is closest to the source vertex (via a directed path).



Prim's algorithm



Dijkstra's algorithm

Algorithms for shortest paths

Variations on a theme: vertex relaxations.

- Bellman–Ford: relax all vertices; repeat V-1 times.
- Dijkstra: relax vertices in order of distance from s.
- Topological sort: relax vertices in topological order. ← see Section 4.4 and next lecture

algorithm	worst-case running time	negative weights †	directed cycles
Bellman-Ford	E V		
Dijkstra	$E \log V$		
topological sort	E		

Which shortest paths algorithm to use?

Select algorithm based on properties of edge-weighted digraph.

- Negative weights (but no "negative cycles"): Bellman-Ford.
- Non-negative weights: Dijkstra.
- DAG: topological sort.

algorithm	worst-case running time	negative weights †	directed cycles
Bellman-Ford	E V		
Dijkstra	$E \log V$		
topological sort	E		

© Copyright 2022 Robert Sedgewick and Kevin Wayne