4.3 Minimum Spanning Trees

- introduction
- cut property
- edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm

https://algs4.cs.princeton.edu
4.3 Minimum Spanning Trees

- introduction
- cut property
- edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm

https://algs4.cs.princeton.edu
A motivating example

Install minimum number of paving stones to connect all of the houses.
Def. A spanning tree of G is a subgraph T that is:

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

![Graph G with a spanning tree T]
Def. A **spanning tree** of G is a subgraph T that is:

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.
Spanning tree

Def. A **spanning tree** of G is a subgraph T that is:

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.
Spanning tree

Def. A *spanning tree* of G is a subgraph T that is:

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.
Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.
Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.

Output. A spanning tree of minimum weight.

![Minimum spanning tree](image)

Brute force. Try all spanning trees?
Minimum spanning trees: quiz 1

Let T be any spanning tree of a connected graph G with V vertices. Which of the following properties must hold?

A. Removing any edge from T disconnects it.
B. Adding any edge to T creates a cycle.
C. T contains exactly $V - 1$ edges.
D. All of the above.
Network design

Network. Vertex = network component; edge = potential connection; edge weight = cost.
Hierarchical clustering

Microarray graph. Vertex = cancer tissue; edge = all pairs; edge weight = dissimilarity.

Reference: Botstein & Brown group
Figure 2: MST dithering

https://link.springer.com/article/10.1023/B:VISI.0000022288.19776.77

Figure 3: Image segmentation

https://www.flickr.com/photos/quasimondo/2695389651

Figure 4: Slime mold vs. rail network

https://www.youtube.com/watch?v=GwKuFREOgmo

4.3 Minimum Spanning Trees

- introduction
- cut property
- edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm
Simplifying assumptions

For simplicity, we assume:

- The graph is connected. \(\Rightarrow \) MST exists.
- The edge weights are distinct. \(\Rightarrow \) MST is unique.

Note. Today's algorithms all work fine with duplicate edge weights.

Assumption simplifies the analysis.

No two edge weights are equal.

See Exercise 4.3.3 (solved on booksite)
Cut property

Def. A cut in a graph is a partition of its vertices into two nonempty sets.

Def. A crossing edge of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge is in the MST.
Cut property

Def. A *cut* in a graph is a partition of its vertices into two nonempty sets.

Def. A *crossing edge* of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge is in the MST.

Note. A cut may have multiple edges in the MST.
Minimum spanning trees: quiz 2

Which is the min-weight edge crossing the cut \{2, 3, 5, 6\}?

A. 0–7 (0.16)
B. 2–3 (0.17)
C. 0–2 (0.26)
D. 5–7 (0.28)

0–7 0.16
2–3 0.17
1–7 0.19
0–2 0.26
5–7 0.28
1–3 0.29
1–5 0.32
2–7 0.34
4–5 0.35
1–2 0.36
4–7 0.37
0–4 0.38
6–2 0.40
3–6 0.52
6–0 0.58
6–4 0.93
Cut property: correctness proof

Def. A cut in a graph is a partition of its vertices into two nonempty sets.
Def. A crossing edge of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge e is in the MST.

Pf. [by contradiction] Suppose e is not in the MST T.

- Adding e to T creates a unique cycle.
- Some other edge f in cycle must also be a crossing edge.
- Removing f and adding e to T yields a different spanning tree T'.
- Since $\text{weight}(e) < \text{weight}(f)$, we have $\text{weight}(T') < \text{weight}(T)$.
- Contradiction. □
Framework for minimum spanning tree algorithms

Generic algorithm (to compute MST in G)

\[T = \emptyset. \]
Repeat until T is a spanning tree: \(V - 1 \) edges
- Find a cut in G.
- \(e \leftarrow \text{min-weight crossing edge.} \)
- \(T \leftarrow T \cup \{ e \}. \)

Efficient implementations.

- Which cut? \(2^{V-2} \) distinct cuts
- How to compute min-weight crossing edge?

Ex 1. Kruskal’s algorithm.
Ex 2. Prim’s algorithm.
Ex 3. Borůvka’s algorithm.
4.3 Minimum Spanning Trees

- introduction
- cut property
- edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm
Weighted edge API

API. Edge abstraction for weighted edges.

```java
public class Edge implements Comparable<Edge>

    Edge(int v, int w, double weight) // create a weighted edge v–w
    int either() // either endpoint
    int other(int v) // the endpoint that's not v
    int compareTo(Edge that) // compare edges by weight

    : : :
```

Idiom for processing an edge e. int v = e.either(), w = e.other(v).
Weighted edge: Java implementation

```java
public class Edge implements Comparable<Edge>
{
    private final int v, w;
    private final double weight;

    public Edge(int v, int w, double weight)
    {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int either()
    {
        return v;
    }

    public int other(int vertex)
    {
        if (vertex == v) return w;
        else return v;
    }

    public int compareTo(Edge that)
    {
        return Double.compare(this.weight, that.weight);
    }
}
```

- **Constructor**: `public Edge(int v, int w, double weight)`
- **Either endpoint**: `public int either()`
- **Other endpoint**: `public int other(int vertex)`
- **Compare edges by weight**: `public int compareTo(Edge that)`
Edge-weighted graph API

API. Same as `Graph` and `Digraph`, except with explicit `Edge` objects.

```java
public class EdgeWeightedGraph

    EdgeWeightedGraph(int V) create an empty graph with V vertices

    void addEdge(Edge e) add weighted edge e to this graph

    Iterable<Edge> adj(int v) edges incident to v

    ; ;
```
Representation. Maintain vertex-indexed array of Edge lists.
public class EdgeWeightedGraph
{
 private final int V;
 private final Bag<Edge>[] adj;

 public EdgeWeightedGraph(int V)
 {
 this.V = V;
 adj = (Bag<Edge>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<>();
 }

 public void addEdge(Edge e)
 {
 int v = e.either(), w = e.other(v);
 adj[v].add(e);
 adj[w].add(e);
 }

 public Iterable<Edge> adj(int v)
 { return adj[v]; }
}
Minimum spanning tree API

Q. How to represent the MST?
A. Technically, an MST is an edge-weighted graph. For convenience, we represent it as a set of edges.

```java
public class MST

MST(EdgeWeightedGraph G) constructor

Iterable<Edge> edges() edges in MST

double weight() weight of MST
```
4.3 Minimum Spanning Trees

- introduction
- cut property
- edge-weighted graph API
- Kruskal’s algorithm
- Prim’s algorithm

https://algs4.cs.princeton.edu
Kruskal’s algorithm demo

Consider edges in ascending order of weight.
- Add next edge to T unless doing so would create a cycle.
In which order does Kruskal’s algorithm select edges in MST?

A. 1, 2, 4, 5, 6
B. 1, 2, 4, 5, 8
C. 1, 2, 5, 4, 8
D. 8, 2, 1, 5, 4
Kruskal’s algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal’s algorithm computes the MST.

Pf. Kruskal’s algorithm adds edge e to T if and only if e is in the MST.

[Case 1 \Rightarrow] Kruskal’s algorithm adds edge $e = v \rightarrow w$ to T.
- Vertices v and w are in different connected components of T.
- Cut $= \text{set of vertices connected to } v \text{ in } T$.
- By construction of cut, no crossing edge
 - is currently in T
 - was considered by Kruskal before e
- Thus, e is a min weight crossing edge.
- Cut property $\Rightarrow e$ is in the MST.

Kruskal considers edges in ascending order by weight

add edge to tree
Kruskal’s algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal’s algorithm computes the MST.

Pf. Kruskal’s algorithm adds edge e to T if and only if e is in the MST.

[Case 2 \iff] Kruskal’s algorithm discards edge $e = v \rightarrow w$.

- From Case 1, all edges currently in T are in the MST.
- The MST can’t contain a cycle, so it can’t also contain e. □
Kruskal’s algorithm: implementation challenge

Challenge. Would adding edge $v-w$ to T create a cycle? If not, add it.

Efficient solution. Use the union–find data structure.

- Maintain a set for each connected component in T.
- If v and w are in same set, then adding $v-w$ to T would create a cycle. [Case 2]
- Otherwise, add $v-w$ to T and merge sets containing v and w. [Case 1]
public class KruskalMST
{
 private Queue<Edge> mst = new Queue<>();

 public KruskalMST(EdgeWeightedGraph G)
 {
 Edge[] edges = G.edges();
 Arrays.sort(edges);
 UF uf = new UF(G.V());
 for (int i = 0; i < G.E(); i++)
 {
 Edge e = edges[i];
 int v = e.either(), w = e.other(v);
 if (uf.find(v) != uf.find(w))
 {
 mst.enqueue(e);
 uf.union(v, w);
 }
 }
 }

 public Iterable<Edge> edges()
 {
 return mst;
 }
}
Kruskal’s algorithm: running time

Proposition. In the worst case, Kruskal’s algorithm computes the MST in an edge-weighted graph in $\Theta(E \log E)$ time and $\Theta(E)$ extra space.

Pf.

- Bottlenecks are sort and union–find operations.

<table>
<thead>
<tr>
<th>operation</th>
<th>frequency</th>
<th>time per op</th>
</tr>
</thead>
<tbody>
<tr>
<td>SORT</td>
<td>1</td>
<td>$E \log E$</td>
</tr>
<tr>
<td>UNION</td>
<td>$V - 1$</td>
<td>$\log V$†</td>
</tr>
<tr>
<td>FIND</td>
<td>$2E$</td>
<td>$\log V$†</td>
</tr>
</tbody>
</table>

† using weighted quick union

- **Total.** $\Theta(V \log V) + \Theta(E \log V) + \Theta(E \log E)$.

- dominated by $\Theta(E \log E)$ since graph is connected
Minimum spanning trees: quiz 4

Given a graph with positive edge weights, how to find a spanning tree that minimizes the sum of the squares of the edge weights?

A. Run Kruskal’s algorithm using the original edge weights.
B. Run Kruskal's algorithm using the squares of the edge weights.
C. Run Kruskal’s algorithm using the square roots of the edge weights.
D. All of the above.

\[
\text{sum of squares} = 4^2 + 6^2 + 5^2 + 10^2 + 11^2 + 7^2 = 347
\]
Problem. Given an undirected graph G with positive edge weights, find a spanning tree that maximizes the sum of the edge weights.

Goal. Design algorithm that takes $\Theta(E \log E)$ time in the worst case.
Greed is good

Greedy algorithm. Make a locally optimal and irreversible choice at each step of algorithm.

with the hope of finding a global optimum
4.3 Minimum Spanning Trees

- introduction
- cut property
- edge-weighted graph API
- Kruskal’s algorithm
 - Prim’s algorithm
Prim’s algorithm demo

- Start with vertex 0 and grow tree T.
- Repeat until $V - 1$ edges:
 - add to T the min-weight edge with exactly one endpoint in T
In which order does Prim’s algorithm select edges in the MST?
Assume it starts from vertex s.

A. 8, 2, 1, 4, 5
B. 8, 2, 1, 5, 4
C. 8, 2, 1, 5, 6
D. 8, 2, 3, 4, 5
Prim’s algorithm: proof of correctness

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959]
Prim’s algorithm computes the MST.

Pf. Let $e = \text{min-weight edge with exactly one endpoint in } T$.
- Cut = set of vertices in T.
- Cut property \Rightarrow edge e is in the MST. \blacksquare

Challenge. How to efficiently find min-weight edge with exactly one endpoint in T?

Diagram:

```
edge e = 7-5 added to tree
```

- **Nodes:** 4, 5, 6, 7, 1, 3, 0, 2
- **Edges:** 4-0, 5-7, 7-2, 5-7, 2-3, 3-1
Prim’s algorithm: lazy implementation demo

- Start with vertex 0 and grow tree T.
- Repeat until $V - 1$ edges:
 - add to T the min-weight edge with exactly one endpoint in T
Prim’s algorithm: lazy implementation

Challenge. How to efficiently find min-weight edge with exactly one endpoint in \(T \)?

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in \(T \).
- Key = edge; priority = weight of edge.
- \texttt{DELETE-MIN} to determine next edge \(e = v \rightarrow w \) to add to \(T \).
- If both endpoints \(v \) and \(w \) are marked (both in \(T \)), disregard.
- Otherwise, let \(w \) be the unmarked vertex (not in \(T \)):
 - add \(e \) to \(T \) and mark \(w \)
 - add to PQ any edge incident to \(w \) but don’t bother if other endpoint is in \(T \)

\[
1-7 \text{ is min weight edge with exactly one endpoint in } T
\]

Priority queue of crossing edges:

\[
\begin{array}{l}
1-7 \ 0.19 \\
0-2 \ 0.26 \\
5-7 \ 0.28 \\
2-7 \ 0.34 \\
4-7 \ 0.37 \\
0-4 \ 0.38 \\
6-0 \ 0.58 \\
\end{array}
\]
Prim’s algorithm: lazy implementation

```java
public class LazyPrimMST {
    private boolean[] marked; // MST vertices
    private Queue<Edge> mst; // MST edges
    private MinPQ<Edge> pq; // PQ of edges

    public LazyPrimMST(WeightedGraph G) {
        pq = new MinPQ<>();
        mst = new Queue<>();
        marked = new boolean[G.V()];
        visit(G, 0); // assume graph G is connected
    }

    while (mst.size() < G.V() - 1) {
        Edge e = pq.delMin();
        int v = e.either(), w = e.other(v);
        if (marked[v] && marked[w]) continue;
        mst.enqueue(e);
        if (!marked[v]) visit(G, v);
        if (!marked[w]) visit(G, w);
    }
}
```

Private void visit(WeightedGraph G, int v)

```java
    marked[v] = true; // add v to tree T
    for (Edge e : G.adj(v))
        if (!marked[e.other(v)])
            pq.insert(e);
}
```

Public Iterable<Edge> mst()

```java
    return mst;
}
```

For each edge $e = v \rightarrow w$:
- repeatedly delete the min-weight edge $e = v \rightarrow w$ from PQ
- ignore if both endpoints in tree T
- add edge e to tree T
- add either v or w to tree T
Lazy Prim’s algorithm: running time

Proposition. In the worst case, lazy Prim’s algorithm computes the MST in $\Theta(E \log E)$ time and $\Theta(E)$ extra space.

Pf.

- Bottlenecks are PQ operations.
- Each edge is added to PQ at most once.
- Each edge is deleted from PQ at most once.

<table>
<thead>
<tr>
<th>operation</th>
<th>frequency</th>
<th>binary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>E</td>
<td>$\log E$</td>
</tr>
<tr>
<td>DELETE-MIN</td>
<td>E</td>
<td>$\log E$</td>
</tr>
</tbody>
</table>
Prim’s algorithm: eager implementation

Challenge. Find min-weight edge with exactly one endpoint in T.

Observation. For each vertex v, need only min-weight edge connecting v to T.
- MST includes at most one edge connecting v to T. Why?
- If MST includes such an edge, it must take lightest such edge. Why?

Impact. PQ of vertices; $\Theta(V)$ extra space; $\Theta(E \log V)$ running time in worst case.

Diagram:

```
   1
  / \  \
5   1
  \ /  /
   5   
```

See textbook for details.
MST: algorithms of the day

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Visualization</th>
<th>Bottleneck</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kruskal</td>
<td></td>
<td>sorting</td>
<td>$E \log E$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>union–find</td>
<td></td>
</tr>
<tr>
<td>Prim</td>
<td></td>
<td>priority queue</td>
<td>$E \log V$</td>
</tr>
</tbody>
</table>