A l g Or 1 [h 1IMSs ROBERT SEDGEWICK | KEVIN WAYNE

3.3 BALANCED SEARCH TREES

» 2-3 search trees
» red-black BSTs (representation)
» red-black BSTs (operations)

» context

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Symbol table review

guarantee
ordered key

ops? interface
delete

sequential search
(unordered list)

n n n equals()

)

binary search
(sorted array)

BST @ @ n v compareTo()

goal log n log n log n v compareTo()

)

log n n n v compareTo()

)s

)

Cha“enge- O(log n) time In worst case. optimized for teaching and coding

/ (introduced in COS 226)

This lecture. 2-3 trees and left-leaning red-black BSTs.
\ co-invented by Bob Sedgewick in the 1970s

3.3 BALANCED SEARCH TREES

» 2-3 search trees

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

2-3 tree

Allow 1 or 2 keys per node.
- 2-node: one key, two children.

- 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.

Perfect balance. Every path from the root to a null link has the same length.

3-node 2-node

\ /
D (RS

null link

2-3 tree demo

Search.
« Compare search key against key(s) in node.
- Find interval containing search key.

- Follow associated link (recursively).

search for H

2-3 tree: insertion

Insertion into a 2-node at bottom.

- Add new key to 2-node to create a 3-node.

insert G

2-3 tree: insertion

Insertion into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.

 If you reach the root and it's a 4-node, split it into three 2-nodes.

insert Z

Balanced search trees: quiz 1

Suppose that you insert P into the following 2-3 tree.

What will be the root of the resulting 2-3 tree?

A. E

B. ER

- (ER,
D. P

E. R

10

Balanced search trees: quiz 2

What is the maximum height of a 2-3 tree containing n keys?

A NlOggl’l
B. ~log, n
C. ~2log,n

D. ~n

18

2-3 tree: performance

Perfect balance. Every path from the root to a null link has the same length.

Key property. The height of a 2-3 tree containing n keys is O(log n).
¢« Min: ~logzn = 0.631 log, n.

« Max: ~log, n.
« Between 12 and 20 for a million keys.

- Between 18 and 30 for a billion keys.

Bottom line. Search and insert take ®(log n) time in the worst case.

19

ST implementations: summary

guarantee
ordered

ops?
delete

sequential search

(unordered list) & & "
binary search 1 y
(sorted array) 03 7t & "
BST n n n v
2-3 trees log n log n log n v

but hidden constant c is large
(depends upon implementation)

key
interface

equals()

compareTo()

compareTo()

compareTo()

).

:)o

0

)

20

2-3 tree: implementation?

Direct implementation is complicated, because:
- Maintaining multiple node types is cumbersome.

- Need multiple compares to move down tree.

- Need to move back up the tree to split 4-nodes.

« Large number of cases for splitting.

fantasy code

public void put(Key key, Value val)

{
Node X = root;
while (x.getTheCorrectChild(key) != null)
{
X = X.getTheCorrectChildKey();
1f (x.1s4Node()) x.split();
}
1f (x.1s2Node()) x.make3Node(key, val);
else 1if (x.1s3Node()) x.makedNode(key, val);
}

Bottom line. Could do it (see COS 326!), but there’s a better way.

21

3.3 BALANCED SEARCH TREES

» red-black BSTs (representation)
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

How to implement 2-3 trees as binary search trees?

Challenge. How to represent a 3 node?

Approach 1. Two BST nodes.
- No way to tell a 3-node from two 2-nodes.

« Can’t (uniquely) map from BST back to 2-3 tree.

Approach 2. Two BST nodes, plus red “glue” node.
- Wastes space for extra node.

« Messy code.

Approach 3. Two BST nodes, with red “glue” link.
« Widely used in practice.

« Arbitrary restriction: red links lean left.

23

Left-leaning red-black BSTs

1. Represent 2-3 tree as a BST.

2. Use “internal” left-leaning red links as “glue” for 3—-nodes.

less
than x

larger key is parent;

/ smaller key is left child

ALY
greater
than vy
between greater less between
x and y than y than x x and y
3-node in a 2-3 tree hodes in corresponding red-black BST

black links connect

red links “glue” two
2-nodes and 3-nodes

nodes within a 3-node

2-3 tree corresponding red-black BST

24

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 trees and LLRB trees.

(E] Ly (P;
(] (H,
(A,

2-3 tree corresponding red-black BST

(X)

25

Balanced search trees: quiz 3

Which LLRB tree corresponds to the following 2-3 tree?

C. Both A and B.

D. Neither A nor B.

26

An equivalent definition of LLRB trees (without reference to 2-3 trees)

Def. A red-black BST is a BST such that:

« No node has two red links connected to it.
« Red links lean left.

« Every path from root to null link has the same number of black links.

27

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) =

can encode color of links in nodes.

private static final boolean RED
private static final boolean BLACK

private class Node

{
private Key key;
private Value val;
private Node left, right;
private boolean color;

¥

private boolean i1sRed(Node h)

{
if (h == null) return false;
return h.color == RED;

true;
false;

h.left.color
is red

null links
are black

h.right.color
is black

28

Review: the road to LLRB trees

BSTs
(can get imbalanced)

how we draw LLRB trees
(color in links)

2-3 trees
(balanced but awkward to implement)

how we implement LLRB trees
(color in nodes)

29

3.3 BALANCED SEARCH TREES

Algorithms » red-black BSTs (operations)

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Search in a red-black BST

Observation. Red-black BSTs are BSTs = search is the same as for BSTs (ignore color).

public Value get(Key key)

{ (M
Node X = root; 0 3

while (x !'= null)

{ cdiRolG
int cmp = key.compareTo(x.key); G m 9

1f (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right; 1ﬂ’
else return x.val;

}

return null;

Remark. Many other operations (iteration, floor, rank, selection) are also identical.

31

Insertion into a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees.

During internal operations, maintain:
« Symmetric order.

« Perfect black balance.

Example violations of color invariants:

right-leaning two red children left-left red
red link (a temporary 4-node) (a temporary 4-node)

To restore color invariants: perform color flips and rotations.

left-right red
(a temporary 4-node)

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(before) private void flipColors(Node h)
{
n.color = RED;
n.left.color = BLACK;
n.right.color = BLACK;
}

Invariants. Maintains symmetric order and perfect black balance.

33

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(after) private void flipColors(Node h)
{
n.color = RED;
n.left.color = BLACK;
n.right.color = BLACK;
}

Invariants. Maintains symmetric order and perfect black balance.

34

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left
(before) private Node rotatelLeft(Node

{

Node x = h.right;
h.right = x.left;
X.left = h;
x.color = h.color;
h.color = RED;
return Xx;

Invariants. Maintains symmetric order and perfect black balance.

h)

35

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left
(after) private Node rotatelLeft(Node

{

Node x = h.right;
h.right = x.left;
X.left = h;
x.color = h.color;
h.color = RED;
return Xx;

Invariants. Maintains symmetric order and perfect black balance.

h)

36

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right
(before) private Node rotateRight(Node h)

{

Node x = h.left;

x h.left = x.right;
X.right = h;
x.color = h.color;
h.color = RED;
return Xx;

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right
(after) private Node rotateRight(Node h)

{

Node x = h.left;
h.left = x.right;
X.right = h;
x.color = h.color;
h.color = RED;
return Xx;

Invariants. Maintains symmetric order and perfect black balance.

Balanced search trees: quiz 4

Which sequence of elementary operations transforms the red-black BST at left

to the one at right?

A. Color flip E; left rotate R.
B. Color flip R; left rotate E.
C. Color flip R; left rotate R.

D. Color flip R; right rotate E.

39

Insertion into a LLRB tree

to preserve symmetric order

« Do standard BST insert and color new link red. e o -

- Repeat up the tree until color invariants restored:
— two left red links in a row? = rotate right

— left and right links both red? = color flip

— only right link red? = rotate left
inserting H two lefts in a row
G S0 rotalte right
/
add new
node here

right link red

so rotate left
both children red l f red-black BST

so flip colors

!

Insertion into a LLRB tree

« Do standard BST insert and color new link red.
- Repeat up the tree until color invariants restored:
— two left red links in a row? = rotate right

— left and right links both red? = color flip

— only right link red? = rotate left

inserting P both children red
so flip colors

red so

add new flip colors
node here
two lefts in a row
right link red so rotate right \{
S0 rota\tf left

red-black BST

44

Red-black BST construction demo

insert SEARCHXMPL

45

Ins

ertion into a LLRB tree: Java implementation

Do standard BST insert and color new link red.
Repeat up the tree until color invariants restored:
— only right link red?
— two left red links in a row?
— left and right links both red?

private Node put(Node h, Key key, Value val)

{

insert at bottom
(and color it red)

if (h == null) return new Node(key, val, RED); <

int cmp = key.compareTo(h.key) ;

42 (cmp < 0) h.left = put(h.left, key, val);
else 1f (cmp > 0) h.right = put(h.right, key, val);
else h.val = val;

1f (isRedCh.right) && !isRed(h.left)) h = rotateLeft(h);

if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); - restore color
if (isRed(h.left) && isRed(h.right)) flipColors(h); vanants
return h; T

} only a few extra lines of code provides near-perfect balance

46

Insertion into a LLRB tree: visualization

n =255
height =9
average depth = 6.3

“ | A" ﬁa“ ‘ .’A’x,‘m "“ | A" ‘ " ,‘“ ‘

255 insertions in random order

hhhhhh

M S m,.‘ M SR

nnnnnnnnnnnnnnnnnnnnnnnnnnnnn

n
hhhhhhhh

average depth = 6.5

; W MM' ‘Mm WMM WMM
“H‘AHHH

254 insertions in descending order

Balance in LLRB trees

Proposition. Height of LLRB tree is < 2 log, n.

Pf.
« Black height = height of corresponding 2-3 tree < log, n.
« Never two red links in a row.

= height of LLRB tree < (2 x black height) + 1

< 2log,n + 1.

height < 2log, n

50

ST implementations: summary

guarantee
ordered key

ops? interface
delete

sequential search

(unordered list) & n n equals() o
:’Si;"i:\t';yds:;;cyf; log n n n v compareTo() oo
BST n n n v compareTo() Q
2 e log n log n log n v compareTo() @
red-black BSTs log n log n log n v compareTo() @

hidden constant ¢ is small
(=2 log, n compares)

3.3 BALANCED SEARCH TREES

Algorithms
» confext

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Balanced search trees in the wild

Red-black BSTs are widely used as system symbol tables.
« Java: java.util.TreeMap, java.util.TreeSet.
e C++ STL: map, multimap, multiset.
e Linux kernel: CFQ I/O scheduler, VMAS, 1inux/rbtree.h.

Other balanced BSTs. AVL trees, splay trees, randomized BSTs, rank-balanced BSTs,

O
‘/ \‘ ‘/ '\‘ ./ .\.
/\ /\ \ /\ /\ \
O O O O O O O O O O
\ /\ /\
O ® O ® O

B-trees (and cousins) are widely used for file systems and databases.

a

A

ORACLE
Y B oh

DATABASE
NJEE Fs

53

War story 1: red-black BSTs

Telephone company contracted with database provider to build

real-time database to store customer information.

Database implementation.
- Red-black BST.

« Exceeding height limit of 80 triggered error-recovery process.

Database crashed.

« Main cause = height bound exceeded!

- Telephone company sues database provider.
- Legal testimony:

“ If implemented properly, the height of a red—black BST

with n keys is at most 2 1og, n.” — expert witness

I

54

War story 2: red-black BSTs

» Celestine Omin & < >
-l g Follow v

¥ @cyberomin

| was just asked to balance a Binary Search
Tree by JFK's airport immigration. Welcome
to America.

8:26 AM - 26 Feb 2017 from Manhattan, NY

S 2@

8,025 Retweets 7,087 Likes

Celestine Omin & @cyberomin - 26 Feb 2017 v

| was too tired to even think of a BST solution. | have e been travelling for 23hrs.
But | was also asked about 10 CS questions.

Q 8 10 164) 244

Celestine Omin & @cyberomin - 26 Feb 2017 v

sad thing is, if | didn't give the Wikipedia definition for these questions, it was
considered a wrong answetr.

QO 19 10 324) 703

Simon Sharwood @ssharwood - 26 Feb 2017 v
Replying to @cyberomin

seriously? am reporter for @theregister and would love to know more about your
experience

QO 2 1 22) 171

https://twitter.com/cyberomin/status/835888786462625792

The red-black tree song (by Sean Sandys)

http://gsc-history.cs.washington.edu/2002-2003/orientation/

© Copyright 2022 Robert Sedgewick and Kevin Wayne

