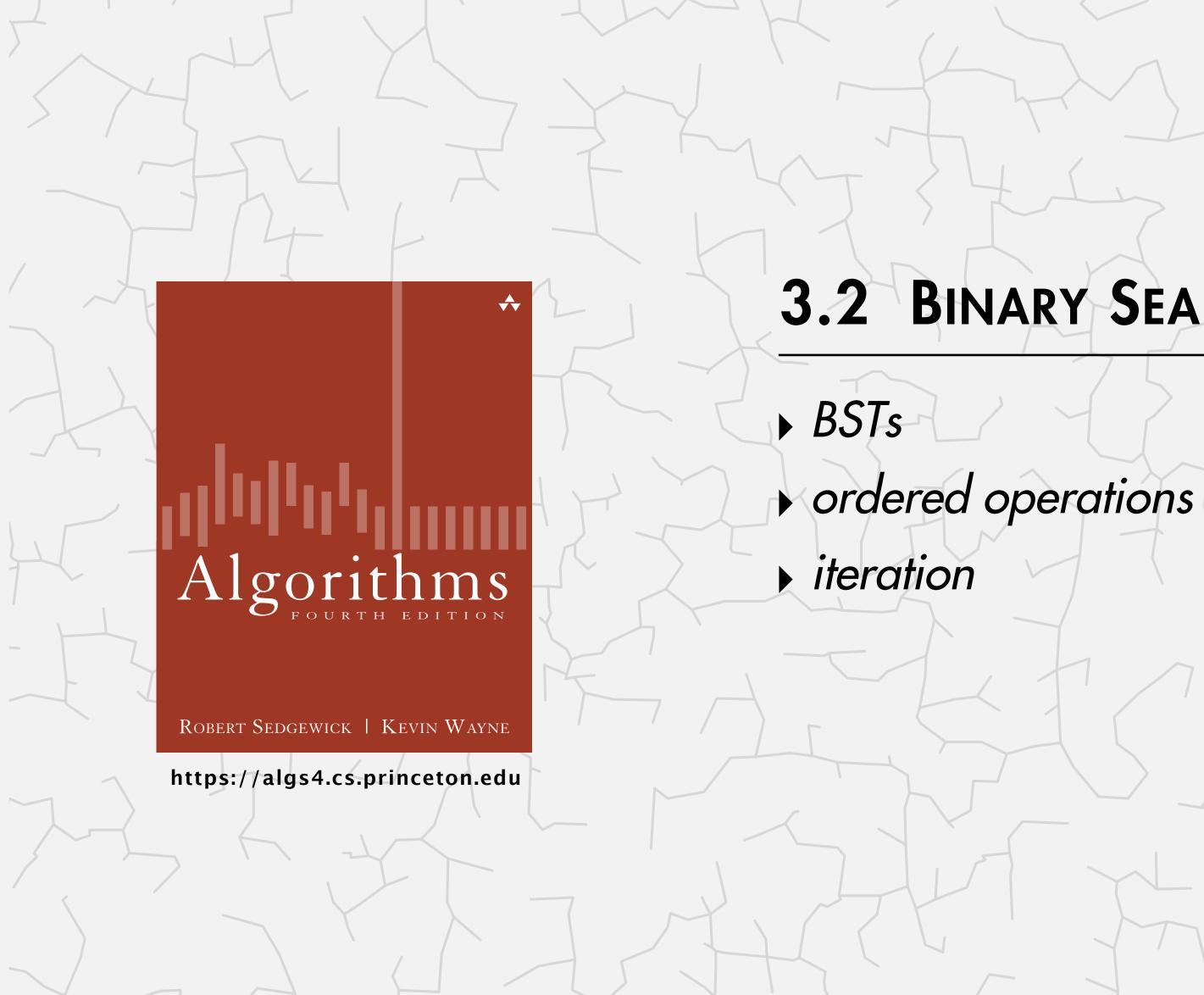
# Algorithms



### ROBERT SEDGEWICK | KEVIN WAYNE

## **3.2 BINARY SEARCH TREES**

Last updated on 2/22/22 4:29 AM





# **3.2 BINARY SEARCH TREES**

ordered operations

► BSTs

iteration

## Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu



**Definition.** A BST is a binary tree in symmetric order.

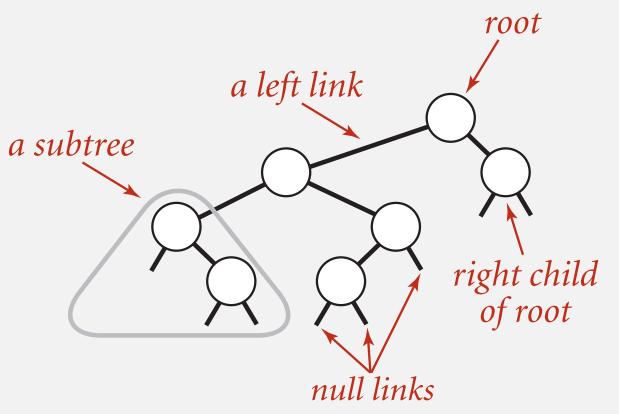
### A binary tree is either:

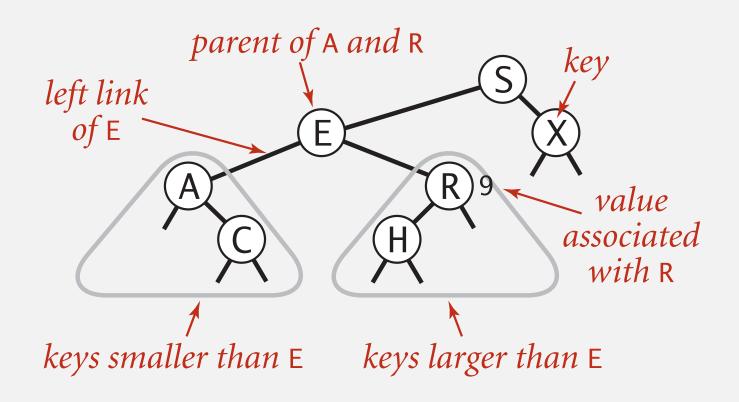
• Empty.

- A node with links to two disjoint binary trees the left subtree and the right subtree.

Symmetric order. Each node has a key; a node's key is:

- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.
- [Duplicate keys not permitted.]





### Which of the following properties hold?

- If a binary tree is heap ordered, then it is symmetrically ordered. Α.
- If a binary tree is symmetrically ordered, then it is heap ordered. B.
- Both A and B. С.
- Neither A nor B. D.

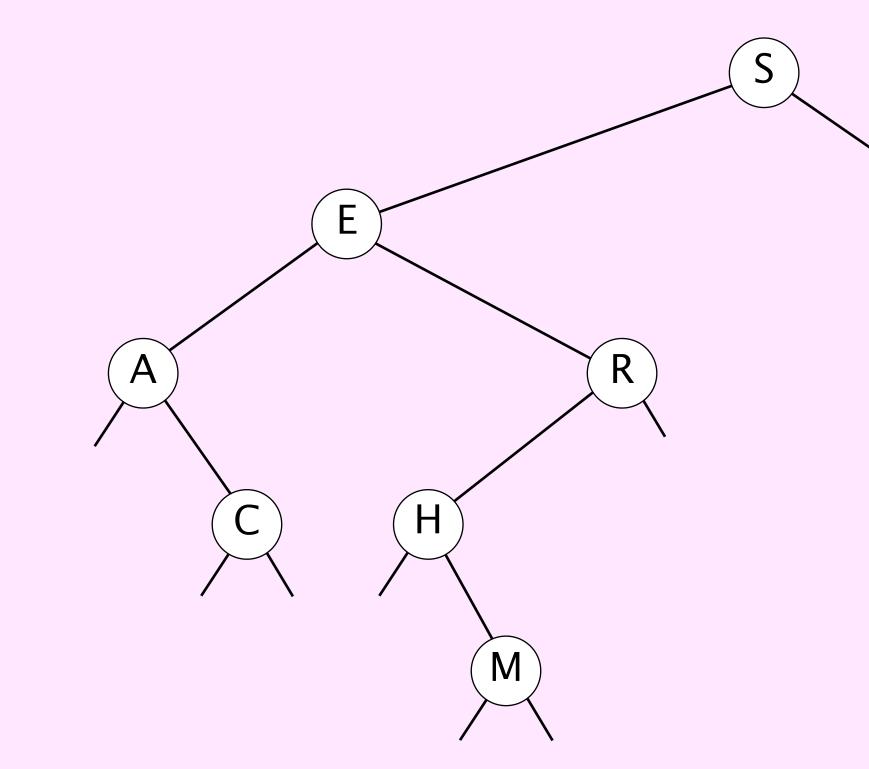




## Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H





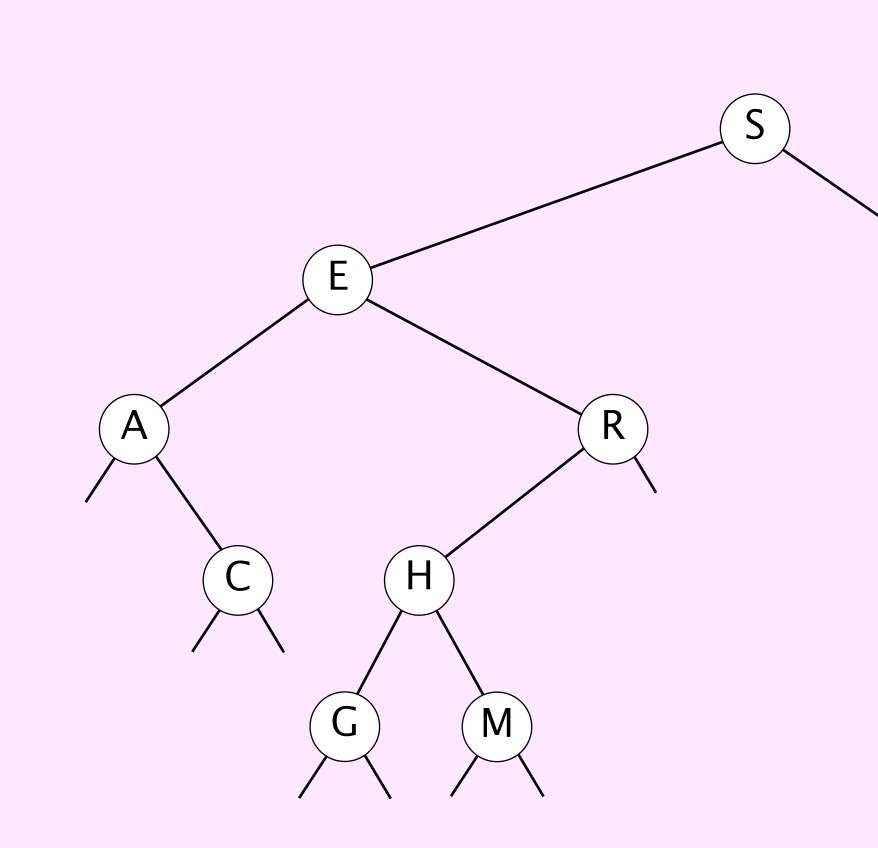
5

Х

## Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.

insert G





Х





## **BST representation in Java**

Java definition. A BST is a reference to a root Node.

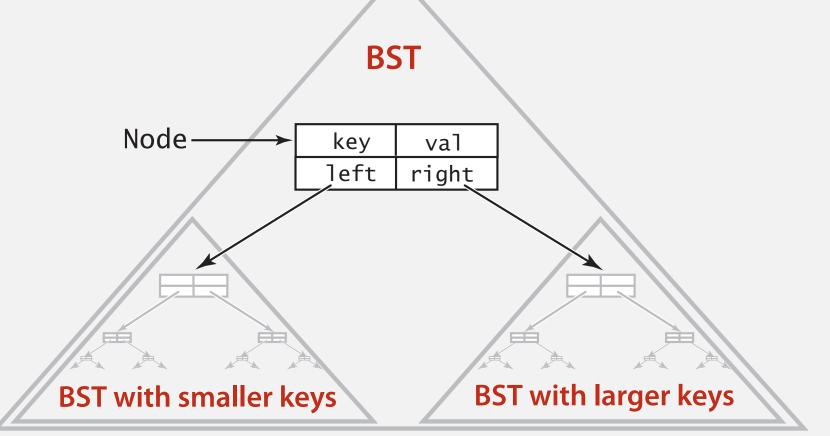
A Node is composed of four fields:

- A Key and a Value.
- A reference to the left and right subtree.

smaller keys

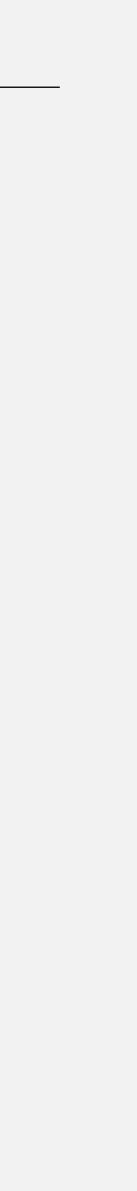
larger keys

```
private class Node
  private Key key;
  private Value val;
  private Node left, right;
   public Node(Key key, Value val)
     this.key = key;
     this.val = val;
```



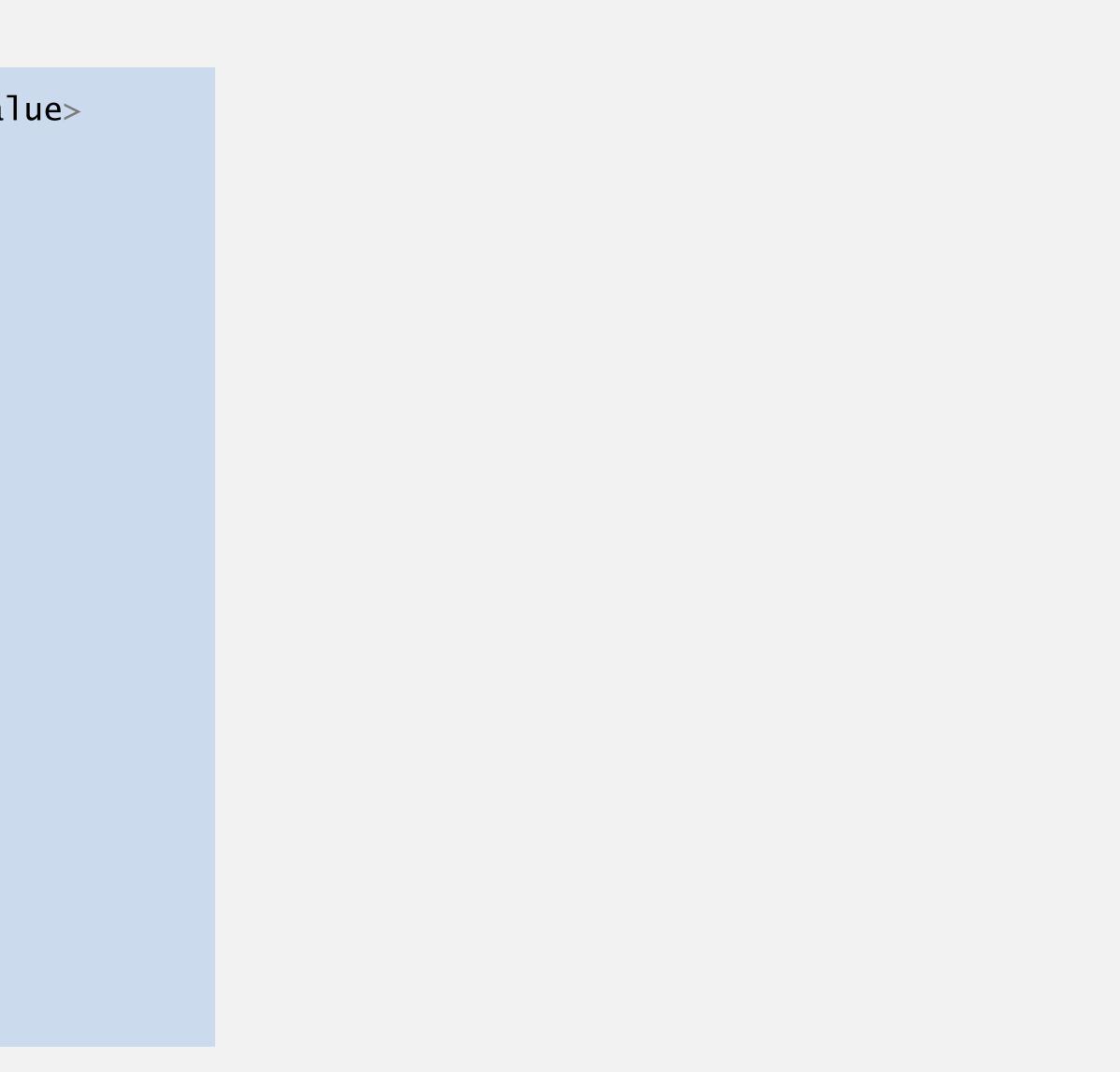
Key and Value are generic types; Key is Comparable

**Binary search tree** 



## BST implementation (skeleton)

```
public class BST<Key extends Comparable<Key>, Value>
                        private Node root; <br/>
<hr/>
                  private class Node
                  { /* see previous slide */ }
                  public void put(Key key, Value val)
                  { /* see slide in this section */ }
                  public Value get(Key key)
                  { /* see next slide */ }
                  public Iterable<Key> keys()
                  { /* see slides in next section */ }
                  public void delete(Key key)
                   { /* see textbook */ }
```



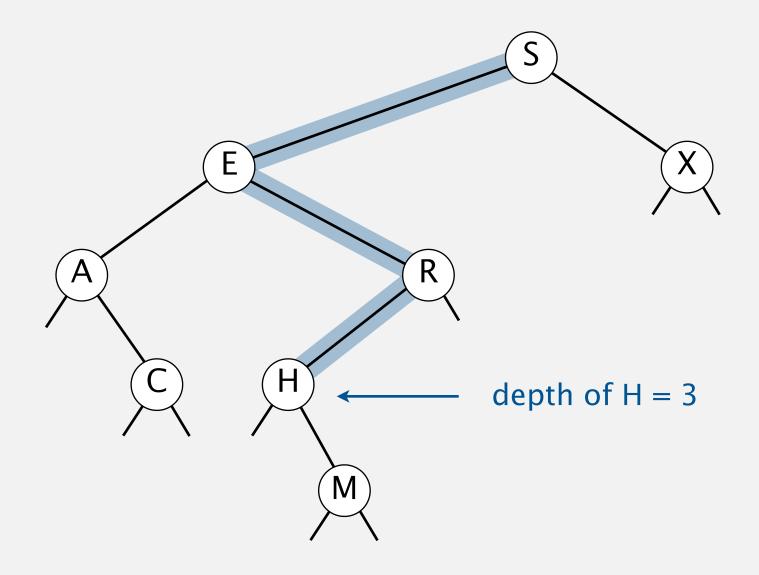


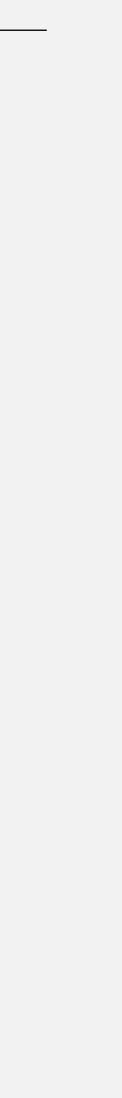
## BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

```
public Value get(Key key)
{
    Node x = root;
    while (x != null)
    {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else return x.val;
    }
    return null;
}
```

**Cost.** Number of compares = 1 + depth of node.





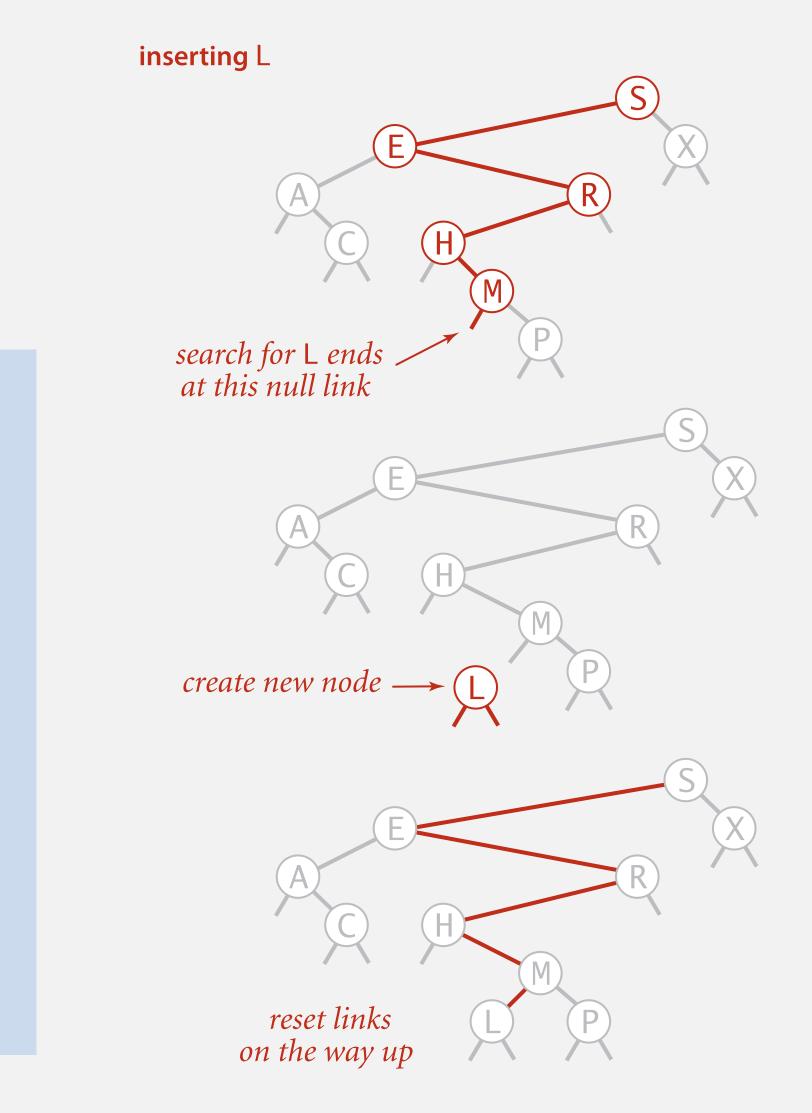
## **BST** insert

Put. Associate value with key.

- Search for key in BST.
- Case 1: Key in BST  $\Rightarrow$  reset value.
- Case 2: Key not in BST  $\Rightarrow$  add new node.

```
public void put(Key key, Value val)
{ root = put(root, key, val); }
private Node put(Node x, Key key, Value val)
{
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if (cmp < 0) x.left = put(x.left, key, val);
    else if (cmp > 0) x.right = put(x.right, key, val);
    else x.val = val;
    return x;
}
    Warning: concise but tricky code; read carefully!
```

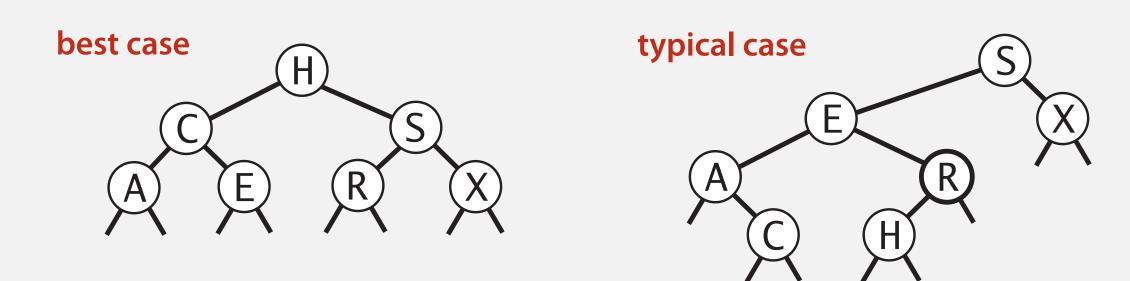
**Cost.** Number of compares = 1 + depth of node.

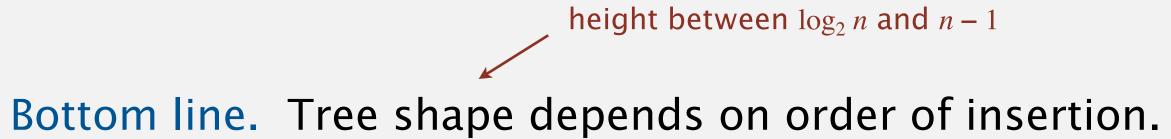


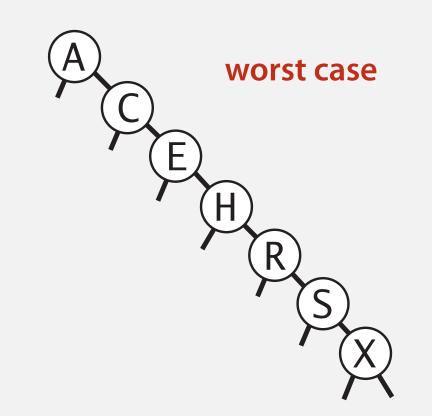
### **Insertion into a BST**

## Tree shape

- Many BSTs correspond to same set of keys.
- Number of compares for search/insert = 1 + depth of node.

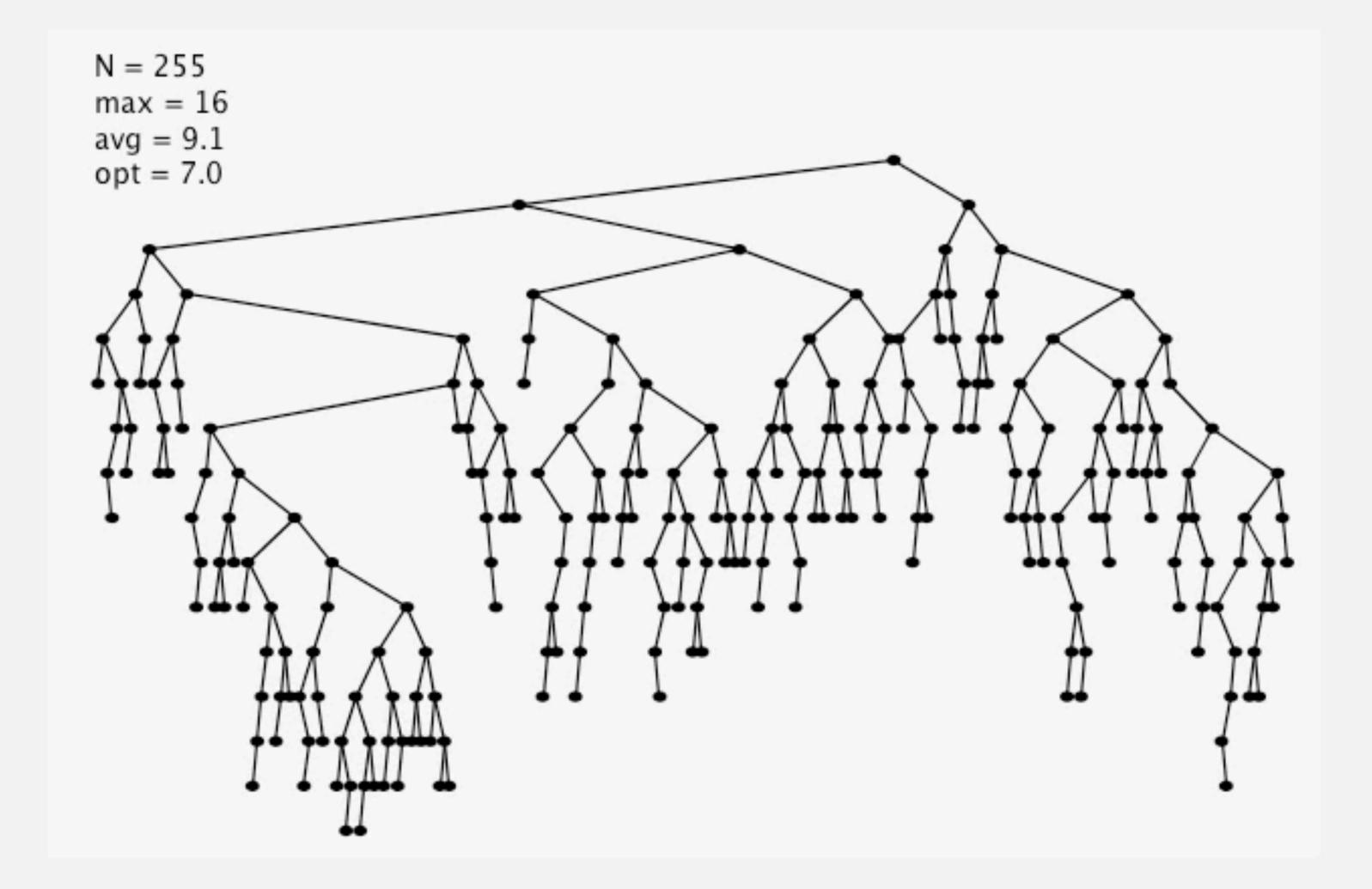






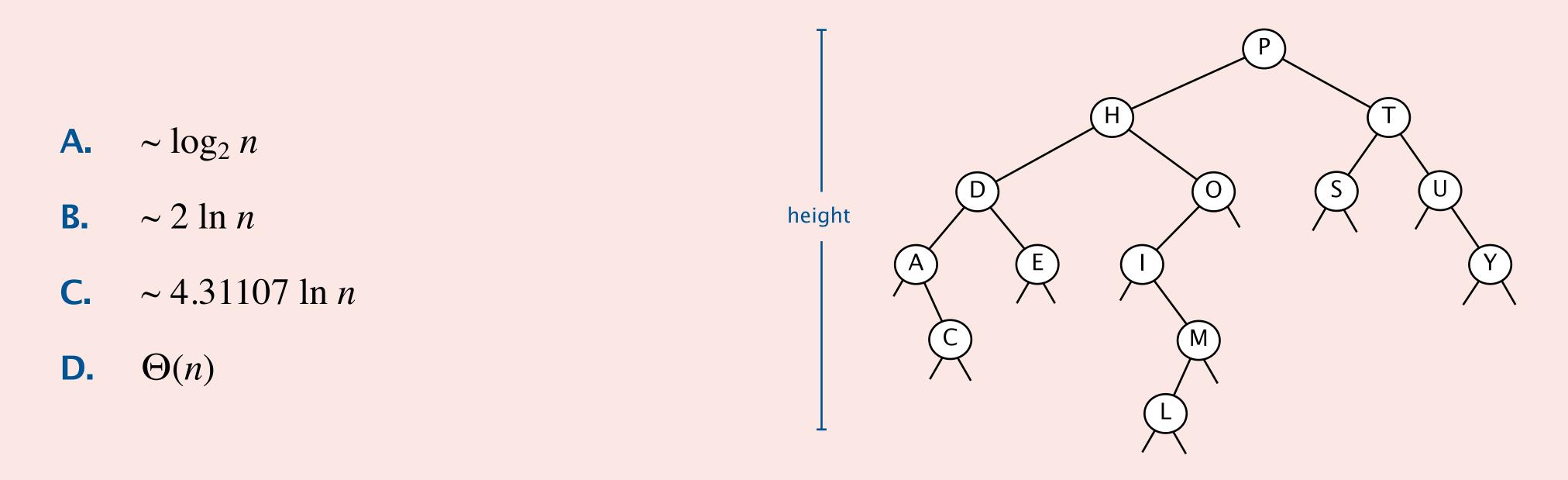
## BST insertion: random order visualization

### Ex. Insert keys in random order.



## Binary search trees: quiz 2

## Suppose that you insert *n* keys in random order into a BST. What is the **expected height** of the resulting BST?







## ST implementations: summary

| implementation                        | guarantee |        | average case |        | operations             |  |
|---------------------------------------|-----------|--------|--------------|--------|------------------------|--|
|                                       | search    | insert | search hit   | insert | on keys                |  |
| sequential search<br>(unordered list) | n         | п      | п            | п      | equals()               |  |
| binary search<br>(ordered array)      | log n     | п      | log n        | п      | <pre>compareTo()</pre> |  |
| BST                                   | n         | n      | log n        | log n  | <pre>compareTo()</pre> |  |
|                                       |           |        |              |        |                        |  |
|                                       |           |        |              |        |                        |  |

# **3.2 BINARY SEARCH TREES**

BSTs

iteration

ordered operations

## Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

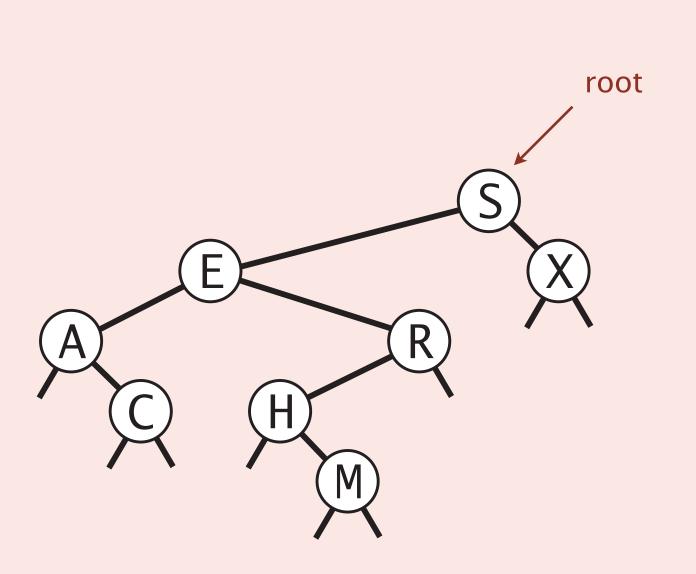


### Binary search trees: quiz 3

In which order does traverse(root) print the keys in the BST?

```
private void traverse(Node x)
   if (x == null) return;
   traverse(x.left);
   StdOut.println(x.key);
   traverse(x.right);
```

- ACEHMRSX Α.
- SEACRHMX B.
- CAMHREXS С.
- D. SEXARCHM

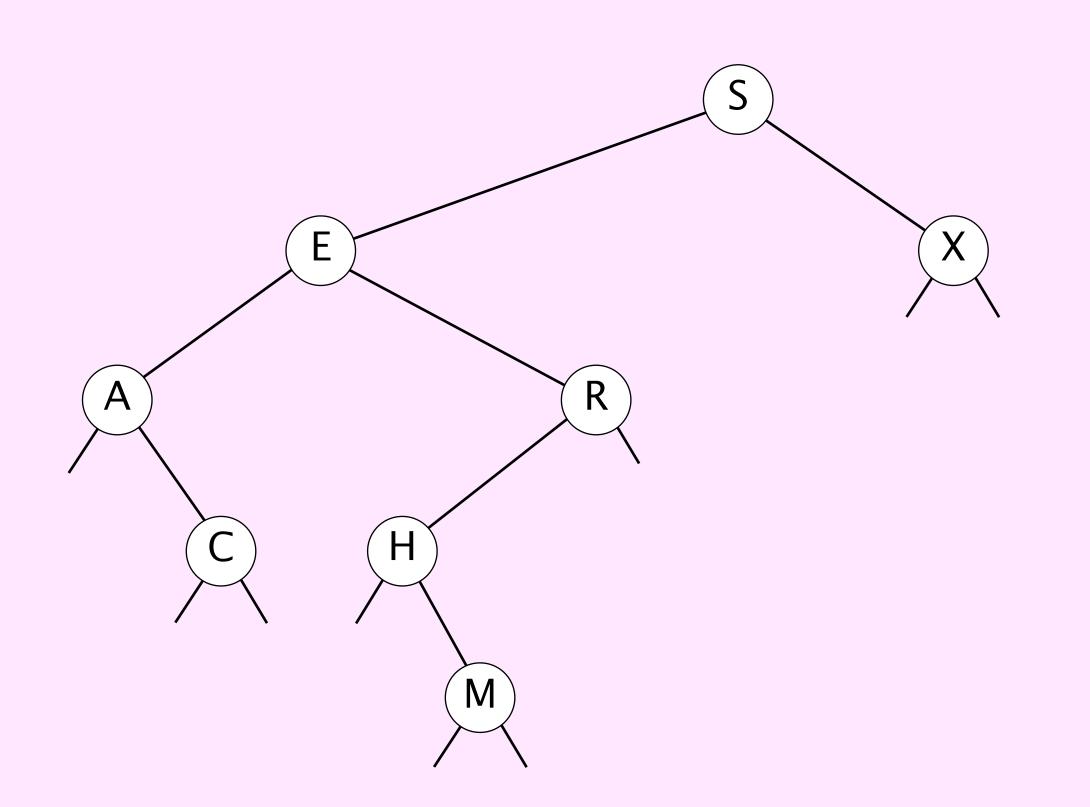






### Inorder traversal

inorder(S) inorder(E) inorder(A) print A inorder(C) print C done C done A print E inorder(R) inorder(H) print H inorder(M) print M done M done H print R done R done E print S inorder(X) print X done X done S





### output: ACEHMRSX

## Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.



```
public Iterable<Key> keys()
```

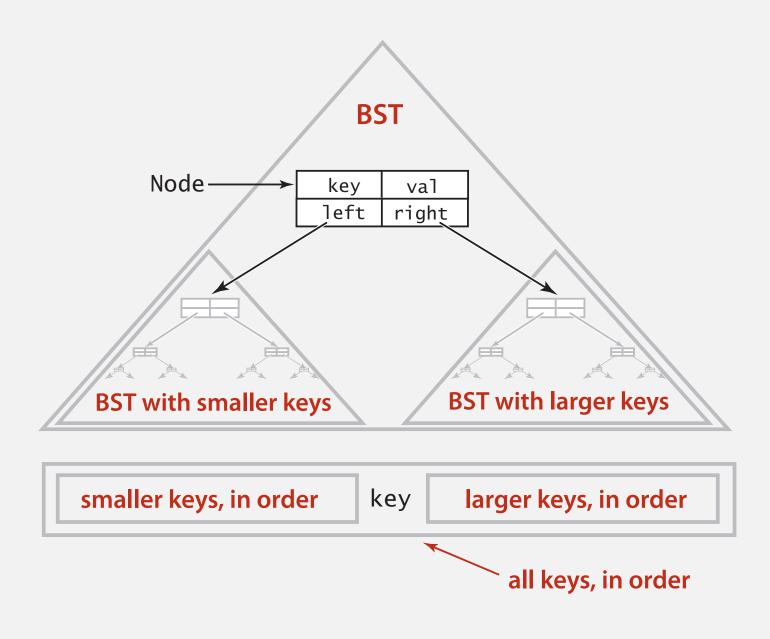
```
Queue<Key> queue = new Queue<Key>();
inorder(root, queue);
```

```
return queue;
```

private void inorder(Node x, Queue<Key> queue)

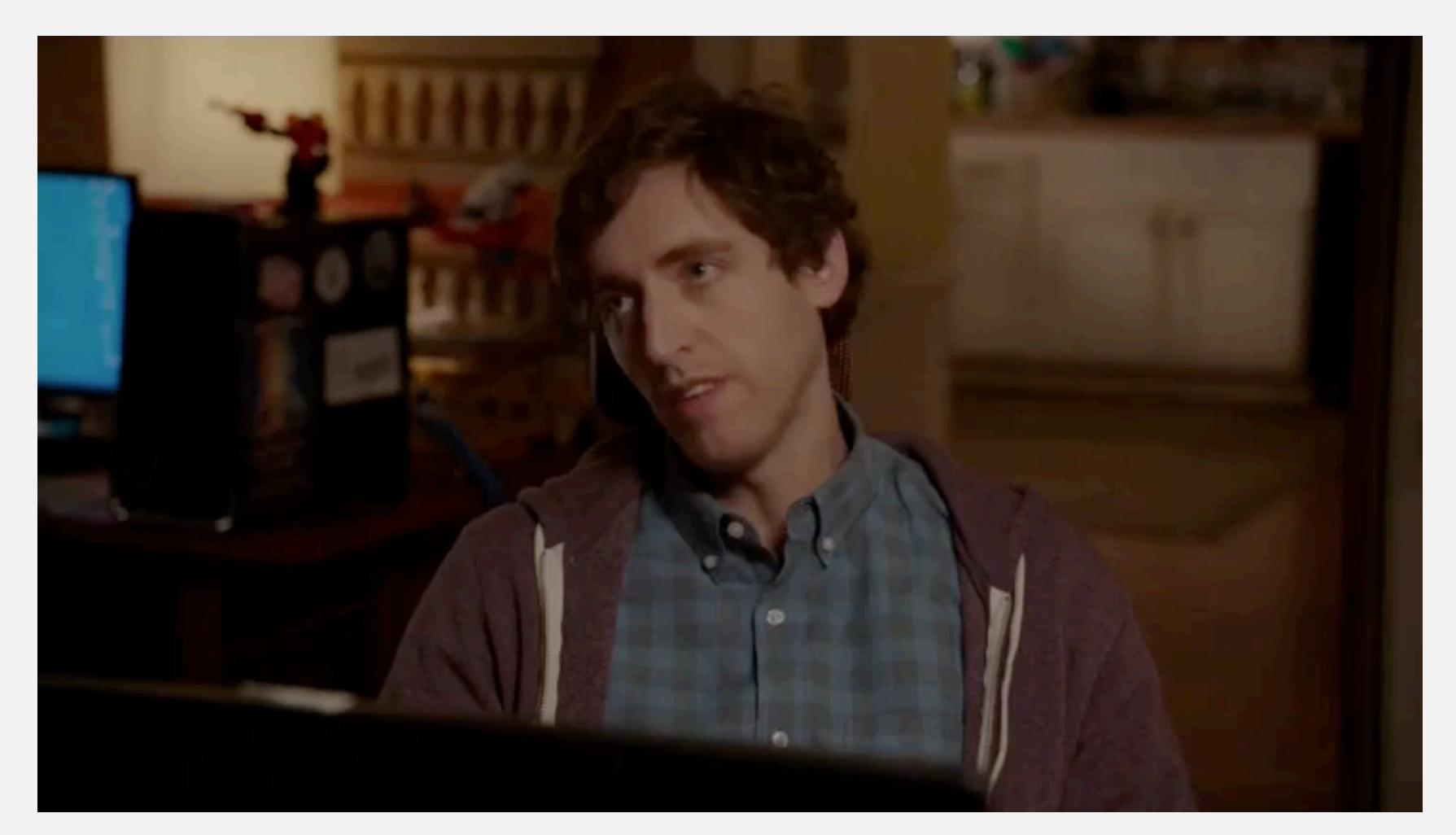
```
if (x == null) return;
inorder(x.left, queue);
queue.enqueue(x.key);
inorder(x.right, queue);
```

Property. Inorder traversal of a BST yields keys in ascending order.



## Inorder traversal: running time

**Property.** Inorder traversal of a binary tree with *n* nodes takes  $\Theta(n)$  time. **Pf.**  $\Theta(1)$  time per node in BST.



Silicon Valley ("The Blood Boy")

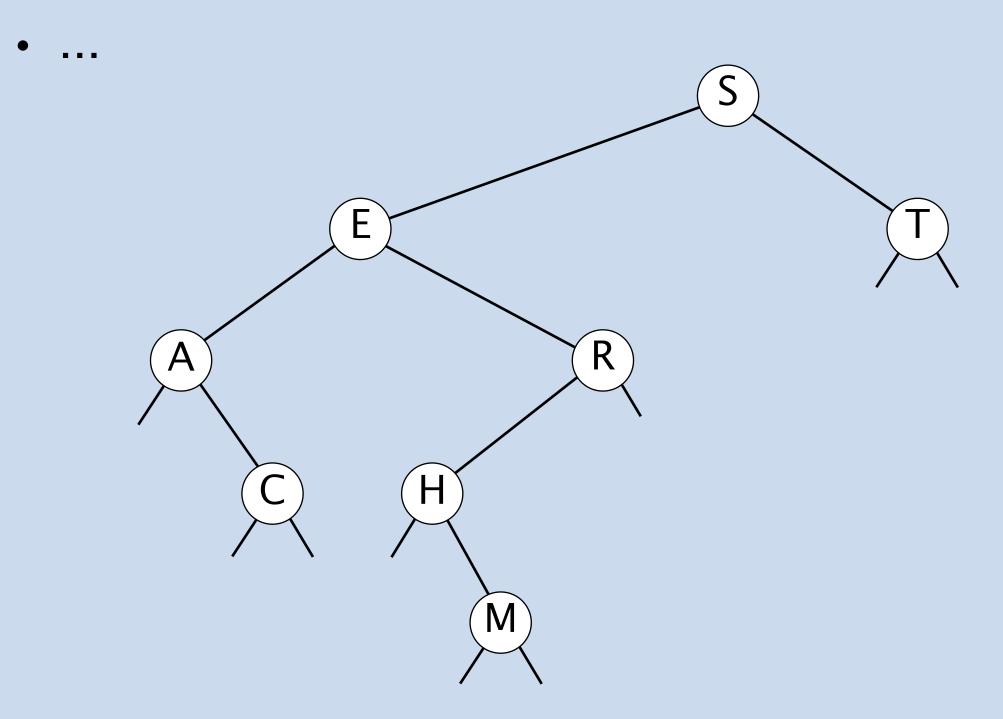




## LEVEL-ORDER TRAVERSAL

Level-order traversal of a binary tree.

- Process root.
- Process children of root, from left to right.
- Process grandchildren of root, from left to right.



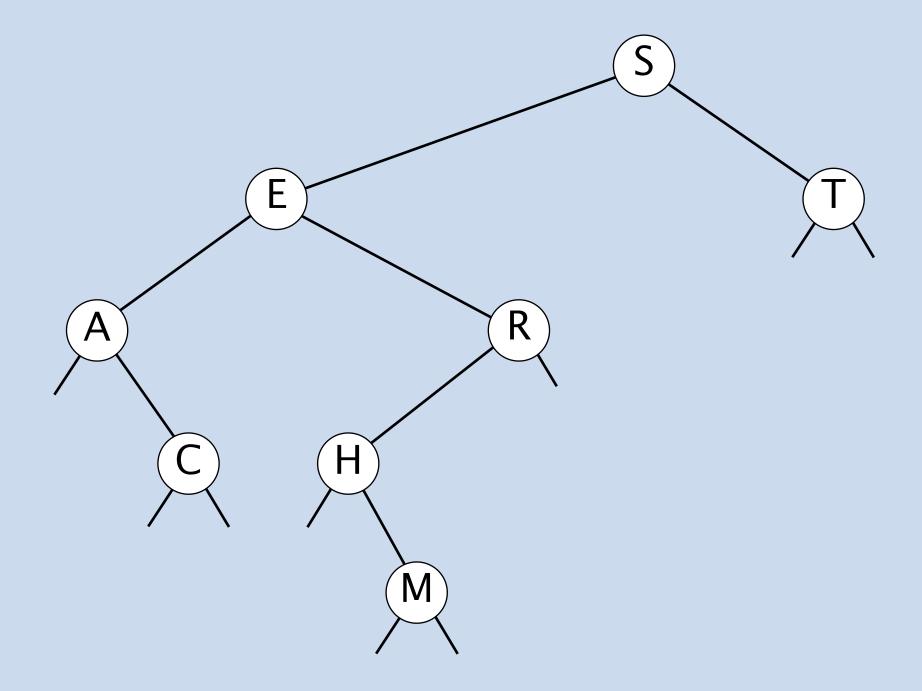
level-order traversal: SETARCHM





## LEVEL-ORDER TRAVERSAL

**Q1.** How to compute level-order traversal of a binary tree in  $\Theta(n)$  time?



level-order traversal: SETARCHM

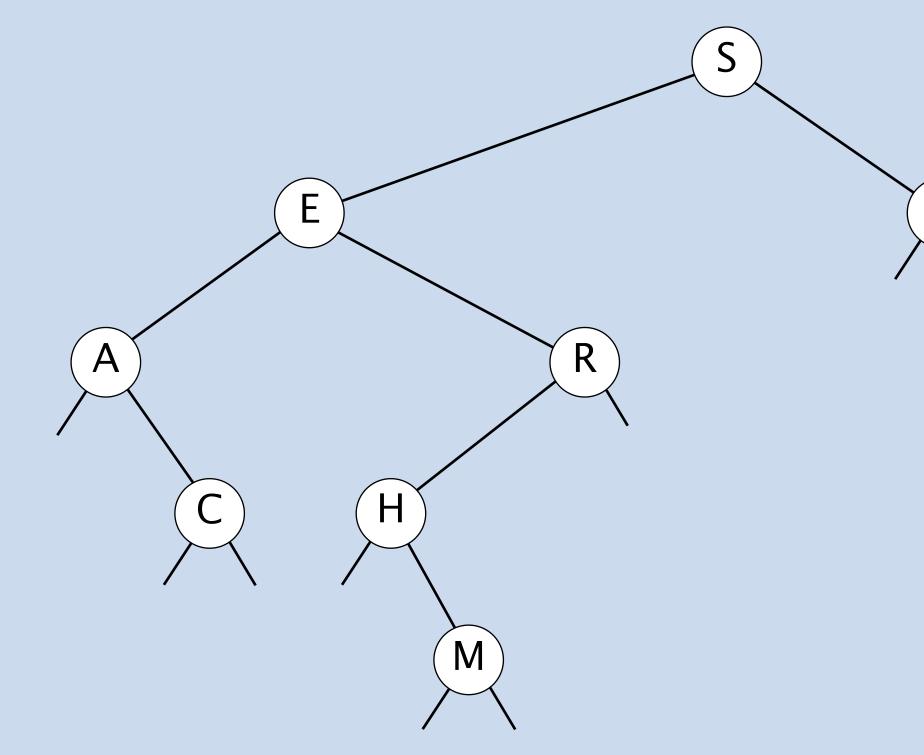




## LEVEL-ORDER TRAVERSAL

Q2. Given the level-order traversal of a BST, how to (uniquely) reconstruct?

Ex. SETARCHM





# uniquely) reconstruct?

needed for Quizzera quizzes





# **3.2 BINARY SEARCH TREES**

## Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

## ordered operations

BSTs-

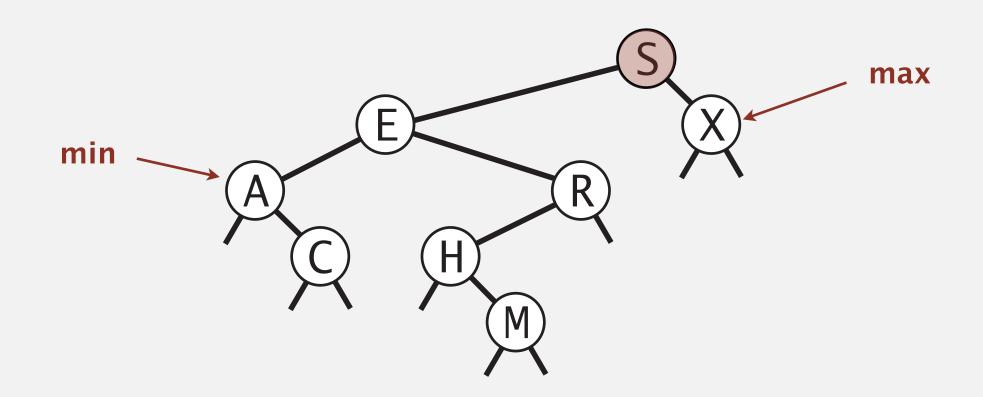
iteration



## Minimum and maximum

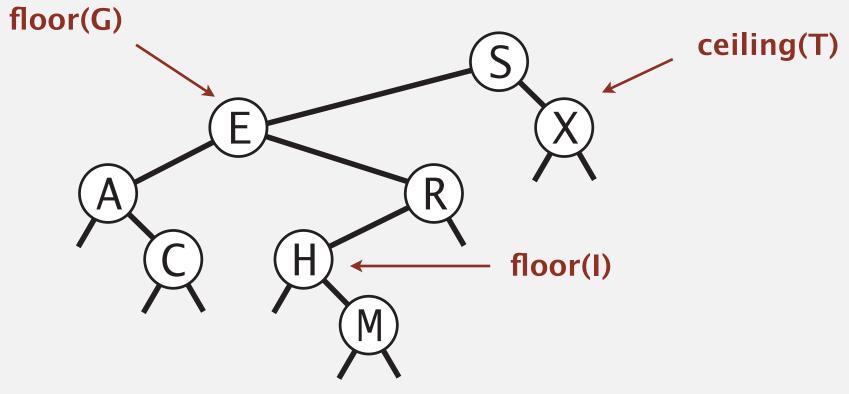
Minimum. Smallest key in BST. Maximum. Largest key in BST.

Q. How to find the min / max?



## Floor and ceiling

**Floor.** Largest key in BST  $\leq$  query key. Ceiling. Smallest key in BST  $\geq$  query key.

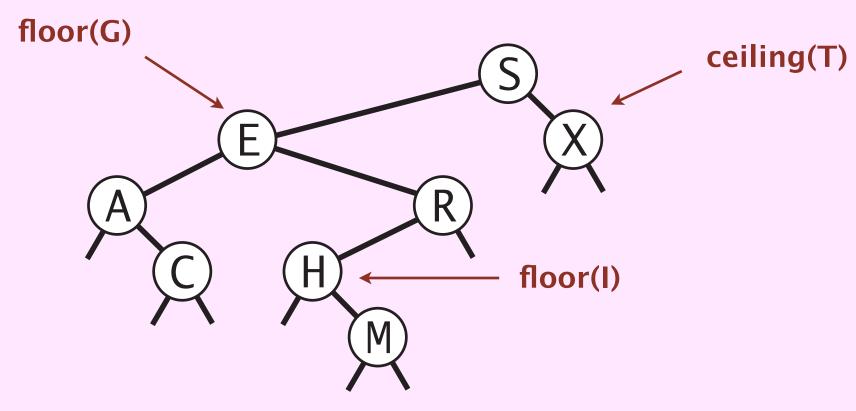


## Computing the floor

**Floor.** Largest key in BST  $\leq$  query key. Ceiling. Smallest key in BST  $\geq$  query key.

Key idea.

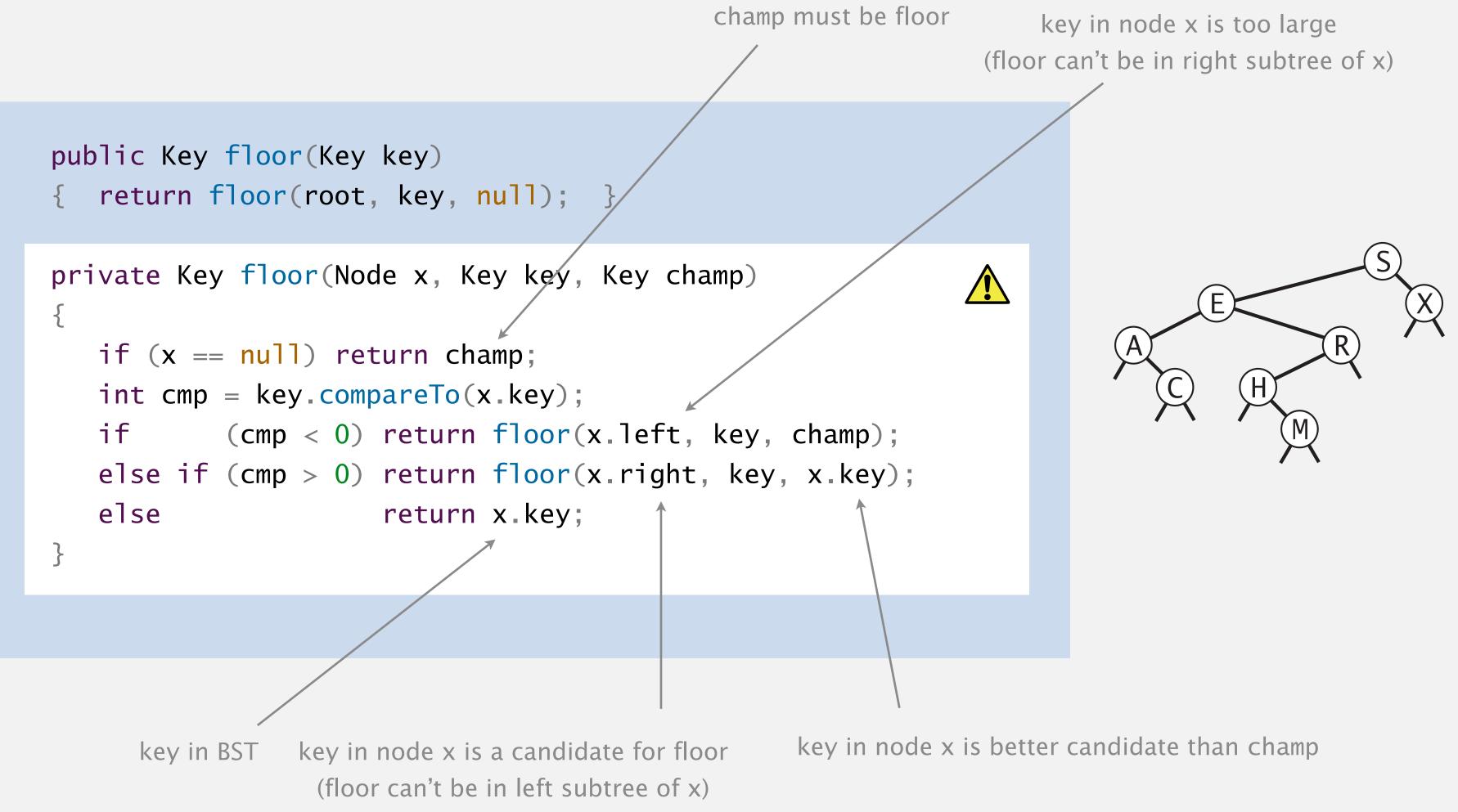
- To compute floor(key) or ceiling(key), search for key.
- Both floor(key) and ceiling(key) are on search path.
- Moreover, as you go down search path, any candidates get better and better.





## Computing the floor: Java implementation

Invariant 1. The floor is either champ or in subtree rooted at x. Invariant 2. Node x is in the right subtree of node containing champ. — assuming champ is not null

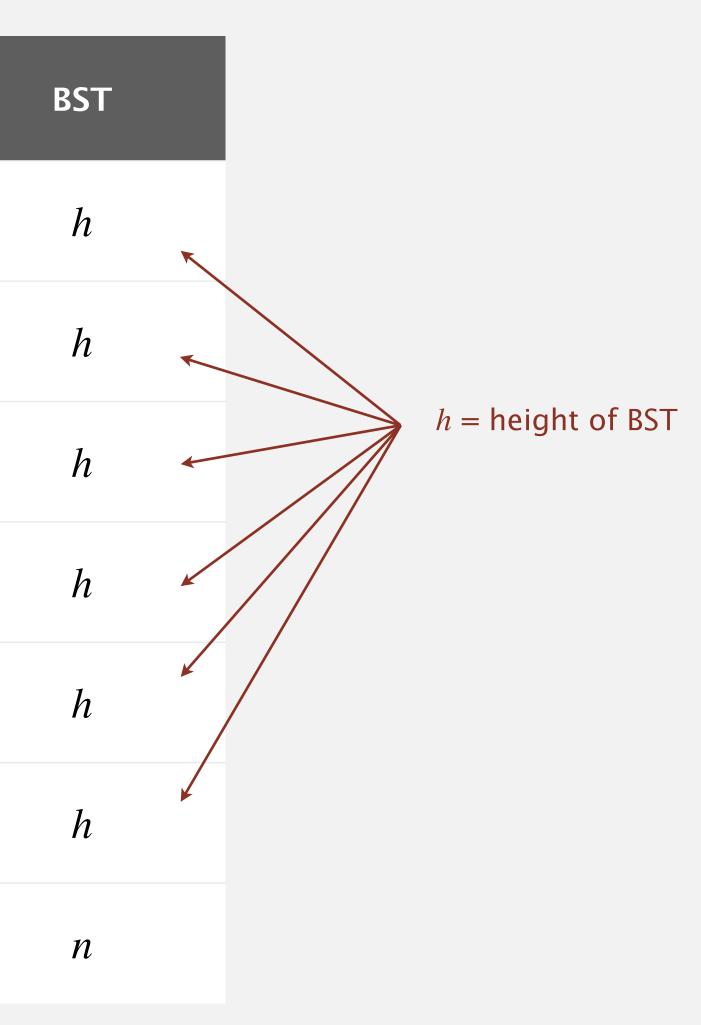




## BST: ordered symbol table operations summary

|                   | sequential<br>search | binary<br>search |  |
|-------------------|----------------------|------------------|--|
| search            | п                    | log n            |  |
| insert            | п                    | n                |  |
| min / max         | п                    | 1                |  |
| floor / ceiling   | п                    | log n            |  |
| rank              | п                    | log n            |  |
| select            | п                    | 1                |  |
| ordered iteration | n log n              | п                |  |

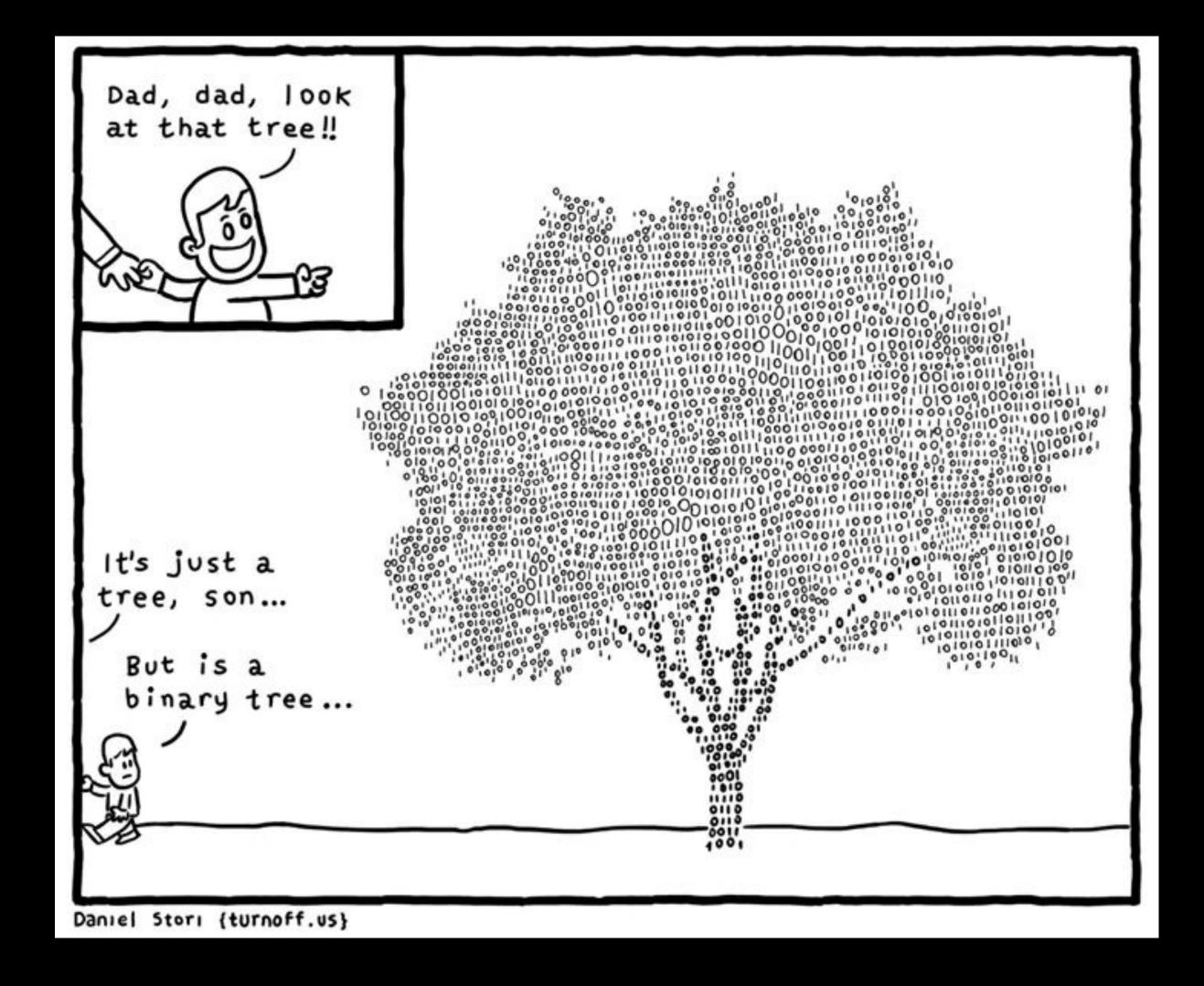
order of growth of worst-case running time of ordered symbol table operations



## ST implementations: summary

| implementation                        | worst    | t case   | ordered | key<br>interface       |  |  |  |
|---------------------------------------|----------|----------|---------|------------------------|--|--|--|
|                                       | search   | insert   | ops?    |                        |  |  |  |
| sequential search<br>(unordered list) | п        | п        |         | equals()               |  |  |  |
| binary search<br>(sorted array)       | log n    | п        | ✓       | <pre>compareTo()</pre> |  |  |  |
| BST                                   | п        | п        | •       | <pre>compareTo()</pre> |  |  |  |
| red-black BST                         | $\log n$ | $\log n$ | ✓       | <pre>compareTo()</pre> |  |  |  |
|                                       |          |          |         |                        |  |  |  |

**next lecture:** BST whose height is guarantee to be  $\Theta(\log n)$ 



## © Copyright 2022 Robert Sedgewick and Kevin Wayne