Algorithms

Cast of characters

programmer needs to develop a working solution

student (you)

will play all of these roles in this course

client wants to solve problem efficiently

theoretician seeks to understand

Running time

"As soon as an Analytical Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will then arise—By what course of calculation can these results be arrived at by the machine in the shortest time?" — Charles Babbage (1864)

how many times do you have to turn the crank?

Running time

"As soon as an Analytical Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will then arise—By what course of calculation can these results be arrived at by the machine in the shortest time?" — Charles Babbage (1864)

Rare book containing the world's first computer algorithm earns \$125,000 at auction

By Matt Kennedy

1						Data.								1	Working Variables.				Result V	ariables.	
Nature of Operation.	Variables acted upon.	Variables receiving results.	Indication of change in the value on any Variable.	Statement of Results.	1V ₁ 0 0 0 1	1V ₂ O 0 0 2	1V ₃ 0 0 0 4	°V₄ ○0 0 0	°V₅ ○ 0 0 0	°V ₆ ⊙ 0 0	°V7 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	°V,	°V ₁₆ ○ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	**V11 O O O O O O O O O O O O O O O O O O	°V ₁₂ O 0 0 0	ο γ ₁₃ Ο ο ο ο ο	B, in a decimal O is fraction.	B ₃ in a decimal OAT fraction.	Bo in a decimal Out	0 0 0 B ₇
- 1	V ₄ - 1V ₁	1V ₄ , 1V ₅ , 1V ₆ 2V ₄	$ \begin{cases} {}^{1}V_{2} = {}^{1}V_{2} \\ {}^{1}V_{3} = {}^{1}V_{3} \\ {}^{1}V_{4} = {}^{2}V_{4} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{5} = {}^{2}V_{5} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ \end{cases} $	= 2n $= 2n-1$ $= 2n+1$	1	2	n	2 n 2 n - 1	2 n 2 n+1	2 n											
+ :	$V_5 \rightarrow {}^2V_4$	¹ V ₁₁	$\begin{cases} {}^{2}V_{5} = {}^{0}V_{5} \\ {}^{2}V_{4} = {}^{0}V_{4} \end{cases}$ $\begin{cases} {}^{1}V_{11} = {}^{2}V_{11} \\ {}^{1}V_{2} = {}^{1}V_{2} \end{cases}$	$ \begin{vmatrix} 2 & n - 1 \\ 2 & n - 1 \\ 1 & 2 & n - 1 \\ 2 & 1 & 2 & n - 1 \\ 1 & 2 & n - 1 \\ 1 & 2 & n - 1 \\ 1 & 2 & 1 & 1 \end{vmatrix} $		2		0	0						$ \begin{array}{r} 2n-1 \\ \hline 2n+1 \\ \hline 1 \\ 2 \\ \hline 2 \\ \hline 2 \\ 1 \end{array} $		or year and order				
- 1	V ₃ -1V ₁	1V ₁₃	(1-1)	$= -\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{1} = \frac{1}{1} = \frac{1}{1} \cdot \frac{1}{1} = \frac{1}{1} = \frac{1}{1} \cdot \frac{1}{1} = \frac$			n							 n - 1	0		$-\frac{1}{2}\cdot\frac{2n-1}{2n+1}=\Lambda_0$				14.10
+ 1	V ₆ ÷ 1V ₇	¹ V ₇ ³ V ₁₁	$\begin{cases} {}^{1}V_{2} = {}^{1}V_{2} \\ {}^{0}V_{7} = {}^{1}V_{7} \\ {}^{1}V_{6} = {}^{1}V_{6} \\ {}^{0}V_{11} = {}^{3}V_{11} \\ \end{cases} \\ \begin{cases} {}^{1}V_{21} = {}^{1}V_{21} \\ {}^{3}V_{11} = {}^{3}V_{11} \\ \end{cases}$	= 2 + 0 = 2 $= \frac{2n}{2} = \lambda_1$ $= B_1 \cdot \frac{2n}{2} = B_1 \lambda_1$		2				2n	2 2				$\frac{2n}{2} = \Lambda_1$ $\frac{2n}{2} = \Lambda_1$	211					
+ 1	V ₁₂ +1V ₁₃	² V ₁₃ ² V ₁₀	$\left\{ {}^{1}V_{12} = {}^{0}V_{12} \\ {}^{1}V_{13} = {}^{2}V_{13} \right\}$	$= -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2} \dots$ $= n-2(=2) \dots$										 n - 2		$B_1, \frac{2n}{2} = B_1 A_1$	$\left\{-\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2}\right\}$	B ₁			
		²V ₆	$ \left\{ \begin{array}{l} {}^{1}V_{6} = {}^{2}V_{6} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{7} = {}^{2}V_{7} \end{array} \right\} $	= 2 n - 1 = 2 + 1 = 3	1					2 n - 1	3						4				
		4V ₁₁		$= \frac{2n-1}{3}$ $= \frac{2n}{2} \cdot \frac{2n-1}{3}$						2 n - 1	3	$\begin{array}{c} 2n-1 \\ \hline 3 \\ 0 \end{array}$			$\frac{2n}{2} \cdot \frac{2n-1}{3}$						
+	V ₁ +2V ₇	3V ₆ 3V ₇	$ \begin{cases} $	$= 2n - 2$ $= 3 + 1 = 4$ $= \frac{2n - 2}{n - 2}$						2n-2 $2n-2$	4		2n - 2		$\begin{bmatrix} 2n & 2n-1 & 2n-2 \end{bmatrix}$		or neutral force in		o lies		a la
Lx.	V ₉ × 4V ₁₁	5V ₁₁	$\begin{cases} {}^{1}V_{9} = {}^{0}V_{9} \\ {}^{4}V_{11} = {}^{5}V_{11} \end{cases}$	2n 2n - 1 2n - 2									0		$\left\{\begin{array}{ccc} 2 & 3 & 3 \\ & = A_3 & \end{array}\right\}$	PA	Captan A may u	and pull	Table Table		
+	V ₁₂ +2V ₁₃	3V ₁₃	$ \left\{ \begin{array}{l} 2V_{12} = {}^{0}V_{12} \\ 2V_{13} = {}^{3}V_{13} \end{array} \right\} $	$= A_0 + B_1 A_1 + B_3 A_3 \dots$										 n - 3		B ₃ A ₃	$\left\{ \Lambda_3 + B_1 \Lambda_1 + B_2 \Lambda_3 \right\}$		Ba		

Ada Lovelace's algorithm to compute Bernoulli numbers on Analytic Engine (1843)

An algorithmic success story

N-body simulation.

- Simulate gravitational interactions among *n* bodies.
- Applications: cosmology, fluid dynamics, semiconductors, ...
- Brute force: n^2 steps.
- Barnes-Hut algorithm: $n \log n$ steps, enables new research.

Andrew Appel PU '81

The challenge

Q. Will my program be able to solve a large practical input?

Our approach. Combination of experiments and mathematical modeling.

3-Sum. Given n distinct integers, how many triples sum to exactly zero?

```
~/Desktop/3sum> more 8ints.txt
8
30 -40 -20 -10 40 0 10 5

~/Desktop/3sum> java ThreeSum 8ints.txt
4
```

	a[i]	a[j]	a[k]	sum	
1	30	-40	10	0	/
2	30	-20	-10	0	/
3	-40	40	0	0	/
4	-10	0	10	0	/

Context. Connected with problems in computational geometry.

3-SUM: brute-force algorithm

```
public class ThreeSum
   public static int count(int[] a)
      int n = a.length;
      int count = 0;
      for (int i = 0; i < n; i++)
                                                         check distinct triples
         for (int j = i+1; j < n; j++)
             for (int k = j+1; k < n; k++)
                                                         for simplicity,
                if (a[i] + a[j] + a[k] == 0) \leftarrow
                                                          ignore integer overflow
                   count++;
      return count;
   public static void main(String[] args)
      In in = new In(args[0]);
      int[] a = in.readAllInts();
      StdOut.println(count(a));
```


Empirical analysis

Run the program for various input sizes and measure running time.

Empirical analysis

Run the program for various input sizes and measure running time.

n	time (seconds) †			
250	0			
500	0			
1,000	0.1			
2,000	0.8			
4,000	6.4			
8,000	51.1			
16,000	?			

[†] on a 2.8GHz Intel PU-226 with 64GB DDR E3 memory and 32MB L3 cache; running Oracle Java 1.7.0_45-b18 on Springdale Linux v. 6.5

Data analysis

Standard plot. Plot running time T(n) vs. input size n.

Hypothesis (power law). $T(n) = a n^b$.

Questions. How to validate hypothesis? How to estimate a and b?

Data analysis

Log-log plot. Plot running time T(n) vs. input size n using log-log scale.

Regression. Fit straight line through data points.

Hypothesis. The running time is about $1.006 \times 10^{-10} \times n^{2.999}$ seconds.

Doubling hypothesis

Doubling hypothesis. Quick way to estimate exponent b in a power-law relationship.

Run program, doubling the size of the input.

n	time (seconds) †	ratio	log ₂ ratio	
250	0		_	$\frac{T(n)}{T(n/2)} = \frac{an^b}{a(n/2)^b} = 2^b$
500	0	4.8	2.3	
1,000	0.1	6.9	2.8	$\implies b = \log_2 \frac{T(n)}{T(n/2)}$
2,000	0.8	7.7	2.9	
4,000	6.4	8	3.0 ←	$\log_2(6.4/0.8) = 3.0$
8,000	51.1	8	3.0	
		seems	to converge to	a constant $b \approx 3$

Hypothesis. Running time is about $a n^b$ with $b = \log_2$ ratio.

Doubling hypothesis

Doubling hypothesis. Quick way to estimate exponent b in a power-law relationship.

- Q. How to estimate a (assuming we know b)?
- A. Run the program (for a sufficient large value of n) and solve for a.

n	time (seconds) †
8,000	51.1
8,000	51.0
8,000	51.1

$$51.1 = a \times 8000^{3}$$

$$\Rightarrow a = 0.998 \times 10^{-10}$$

Hypothesis. Running time is about $0.998 \times 10^{-10} \times n^3$ seconds.

almost identical hypothesis to one obtained via regression (but less work)

Analysis of algorithms: quiz 1

Estimate the running time to solve a problem of size n = 96,000.

- A. 39 seconds
- B. 52 seconds
- C. 117 seconds
- **D.** 350 *seconds*

n	time (seconds)
1,000	0.02
2,000	0.05
4,000	0.20
8,000	0.81
16,000	3.25
32,000	13.01

Experimental algorithmics

System independent effects.

Algorithm. determines exponent b
 Input data. in power law a n^b

System dependent effects.

- Hardware: CPU, memory, cache, ...
- Software: compiler, interpreter, garbage collector, ...
- System: operating system, network, other apps, ...

determines constant a in power law $a n^b$

Bad news. Sometimes difficult to get accurate measurements.

Context: the scientific method

Experimental algorithmics is an example of the scientific method.

Chemistry (1 experiment)

Biology (1 experiment)

Physics (1 experiment)

Computer Science (1 million experiments)

Good news. Experiments are easier and cheaper than other sciences.

Mathematical models for running time

Total running time: sum of cost x frequency for all operations.

- Need to analyze program to determine set of operations.
- Frequency depends on algorithm and input data.
- Cost depends on CPU, compiler, operating system,

Warning. No general-purpose method (e.g., halting problem).

Example: 1-SUM

Q. How many operations as a function of input size n?

exactly *n* array accesses

operation	cost (ns) †	frequency
variable declaration	2/5	2
assignment statement	1/5	2
less than compare	1/5	n+1
equal to compare	1/10	n
array access	1/10	n
increment	1/10	n to $2 n$

in practice, depends on caching, bounds checking, ... (see COS 217)

[†] representative estimates (with some poetic license)

Analysis of algorithms: quiz 2

How many array accesses as a function of n?

```
int count = 0;
for (int i = 0; i < n; i++)
  for (int j = i+1; j < n; j++)
    if (a[i] + a[j] == 0)
    count++;</pre>
```

- **A.** $\frac{1}{2} n (n-1)$
- **B.** n(n-1)
- C. $2 n^2$
- **D.** 2 n (n 1)

Example: 2-SUM

Q. How many operations as a function of input size n?

$$0 + 1 + 2 + \ldots + (n - 1) = \frac{1}{2}n(n - 1)$$
$$= \binom{n}{2}$$

operation	cost (ns)	frequency
variable declaration	2/5	n+2
assignment statement	1/5	n+2
less than compare	1/5	$\frac{1}{2}(n+1)(n+2)$
equal to compare	1/10	$\frac{1}{2} n (n-1)$
array access	1/10	n(n-1)
increment	1/10	$\frac{1}{2} n (n + 1) \text{ to } n^2$

$$1/4 n^2 + 13/20 n + 13/10 \text{ ns}$$
to
$$3/10 n^2 + 3/5 n + 13/10 \text{ ns}$$

(tedious to count exactly)

Simplification 1: cost model

Cost model. Use some elementary operation as a proxy for running time.

```
int count = 0;
for (int i = 0; i < n; i++)
  for (int j = i+1; j < n; j++)
    if (a[i] + a[j] == 0)
    count++;</pre>
```

operation	cost (ns)	frequency
variable declaration	2/5	n+2
assignment statement	1/5	n+2
less than compare	1/5	$\frac{1}{2}(n+1)(n+2)$
equal to compare	1/10	$\frac{1}{2} n (n-1)$
array access	1/10	(n(n-1))
increment	1/10	$\frac{1}{2} n (n + 1) \text{ to } n^2$

— cost model = array accesses

(we're assuming compiler/JVM does not optimize any array accesses away!)

Simplification 2: asymptotic notations

Tilde notation. Discard lower-order terms.

Big Theta notation. Also discard leading coefficient.

function	tilde	big Theta
$4 n^5 + 20 n + 16$	$\sim 4 n^5$	$\Theta(n^5)$
$7 n^2 + 100 n^{4/3} + 56$	$\sim 7 n^2$	$\Theta(n^2)$
$\frac{1}{6} n^3 - \frac{1}{2} n^2 + \frac{1}{3} n$	$\sim 1/6 n^3$	$\Theta(n^3)$

Leading-term approximation

Rationale.

- When *n* is large, lower-order terms are negligible.
- When n is small, we don't care.

Common order-of-growth classifications

order of growth	emoji	name	typical code framework	description	example	T(2n) / T(n)
$\Theta(1)$		constant	a = b + c;	statement	add two numbers	1
$\Theta(\log n)$		logarithmic	for (int i = n; i > 0; i /= 2) { }	divide in half	binary search	~ 1
$\Theta(n)$		linear	for (int i = 0; i < n; i++) { }	single loop	find the maximum	2
$\Theta(n \log n)$		linearithmic	see mergesort lecture	divide and conquer	mergesort	~ 2
$\Theta(n^2)$		quadratic	for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) { }	double loop	check all pairs	4
$\Theta(n^3)$		cubic	<pre>for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) for (int k = 0; k < n; k++)</pre>	triple loop	check all triples	8
$\Theta(2^n)$	25	exponential	see combinatorial search lecture	exhaustive search	check all subsets	2^n

Example: 2-SUM

Q. Approximately how many array accesses as a function of input size n?

```
int count = 0;

for (int i = 0; i < n; i++)

for (int j = i+1; j < n; j++)

if (a[i] + a[j] == 0)

count++;

0+1+2+...+(n-1) = \frac{1}{2}n(n-1)
= \binom{n}{2}
```

A. $\sim n^2$ array accesses.

Example: 3-SUM

Q. Approximately how many array accesses as a function of input size n?

Bottom line. Use cost model and asymptotic notation to simplify analysis.

Some useful discrete sums and approximations

Triangular sum.
$$1+2+3+\ldots+n \sim \frac{1}{2}n^2$$

Harmonic sum.
$$1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \sim \int_{x=1}^{n} \frac{1}{x} dx = \ln n$$

Geometric sum.
$$1+2+4+8+\ldots+n=2n-1$$

$$\uparrow$$
 $n \text{ a power of 2}$

Analysis of algorithms: quiz 3

How many array accesses as a function of n?

```
int count = 0;
for (int i = 0; i < n; i++)
  for (int j = i+1; j < n; j++)
    for (int k = 1; k <= n; k = k*2)
      if (a[i] + a[j] >= a[k])
      count++;
```

- **A.** $\sim n^2 \log_2 n$
- B. $\sim 3/2 \ n^2 \log_2 n$
- C. $\sim 1/2 n^3$
- **D.** $\sim 3/2 \ n^{3}$

Analysis of algorithms: quiz 4

What is order of growth of running time as a function of n?

- **A.** $\Theta(n)$
- **B.** $\Theta(n \log n)$
- C. $\Theta(n^2)$
- $\mathbf{D.} \quad \Theta(2^n)$

Basics

Bit. 0 or 1. NIST most computer scientists

Byte. 8 bits.

Megabyte (MB). 1 million or 2²⁰ bytes.

Gigabyte (GB). 1 billion or 2³⁰ bytes.

64-bit machine. We assume a 64-bit machine with 8-byte pointers.

some JVMs "compress" ordinary object pointers to 4 bytes to avoid this cost

Typical memory usage for primitive types and arrays

type	bytes
boolean	1
byte	1
char	2
int	4
float	4
long	8
double	8

primitive types

type	bytes	
boolean[]	(1n + 24)	wasteful (but $\sim 36n$ in Python 3)
int[]	4n + 24	(but ~ 50n in rython 5)
double[]	8 <i>n</i> + 24 ←	—— array overhead = 24 byte

type	bytes
boolean[][]	$\sim 1 n^2$
int[][]	$\sim 4 n^2$
double[][]	$\sim 8 n^2$

one-dimensional arrays (length n)

two-dimensional arrays (n-by-n)

Typical memory usage for objects in Java

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Round up memory of each object to be a multiple of 8 bytes.

Ex 1. Each Date object uses 32 bytes of memory.

```
public class Date
   private int day;
                                   object
                                                       16 bytes (object overhead)
   private int month;
                                  overhead
   private int year;
                                    day
                                                       4 bytes (int)
                                  month
                                                       4 bytes (int)
                                   year
                                                       4 bytes (int)
                                  padding
                                                       4 bytes (padding)
                                                       32 bytes
```

Analysis of algorithms: quiz 5

How much memory does a WeightedQuickUnionUF use as a function of n?

```
A. \sim 4 n bytes
```

B. $\sim 8 n$ bytes

C. $\sim 4 n^2$ bytes

D. $\sim 8 n^2$ bytes

```
public class WeightedQuickUnionUF
  private int[] parent;
  private int[] size;
  private int count;
   public WeightedQuickUnionUF(int n)
     parent = new int[n];
     size = new int[n];
     count = 0;
     for (int i = 0; i < n; i++)
        parent[i] = i;
     for (int i = 0; i < n; i++)
        size[i] = 1;
```

Turning the crank: summary

Empirical analysis.

- Execute program to perform experiments.
- Assume power law.
- Formulate a hypothesis for running time.
- Model enables us to make predictions.

Mathematical analysis.

- Analyze algorithm to count frequency of operations.
- Use tilde and big-Theta notations to simplify analysis.
- Model enables us to explain behavior.

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \lceil n/2^{h+1} \rceil \ h \sim n$$

This course. Learn to use both.

"It is convenient to have a measure of the amount of work involved in a computing process, even though it be a very crude one. We may count up the number of times that various elementary operations are applied in the whole process and then given them various weights." — Alan Turing (1947)

© Copyright 2022 Robert Sedgewick and Kevin Wayne