
COS 226 Algorithms and Data Structures Spring 2022

Final Exam Solutions

1. Initialization. Don’t forget to do this.

2. Analysis of algorithms.

(2.1) ∼ 48n bytes

Each of the n Node objects uses 48 bytes:

• 16 bytes object overhead

• 16 bytes for the two Node references

• 16 bytes for the two double instance variables

(2.2) Θ(E + V )

This is the idiomatic double nested loop that iterates over each vertex and each edge
exactly once.

3. String operations.

(3.1) Θ(n3)

String concatenation takes time proportional to the length of the resulting string. So, the
running time is Θ(n + 2n + 3n + . . . + n2) = Θ(n(1 + 2 + 3 + . . . + n)) = Θ(n3).

(3.2) Θ(n4)

String concatenation takes time proportional to the length of the resulting string. So, the
running time is Θ(1 + 2 + 3 + . . . + n2) = Θ(n4).

(3.3) Θ(n2)

Appending each character to the end of a StringBuilder takes Θ(1) amortized time.
So, starting from an empty StringBuilder, appending n2 characters takes Θ(n2) time.

(3.4) Θ(n2)

String concatenation takes time proportional to the length of the resulting string. As-
suming n is a power of 2, the running time is Θ(1 + 2 + 4 + 8 + . . . + n2) = Θ(n2). If n is
not a power of 2, then the string is doubled until reaching the smallest power of 2 greater
than n2, but this doesn’t affect the asymptotic running time. The substring extraction
also take Θ(n2) time.

4. String sorts.

(4.1) LSD radix sort (after 1 pass)

(4.2) 3-way radix quicksort (after the first partitioning step)

(4.3) LSD radix sort (after 2 passes)

(4.4) MSD radix sort (after the first call to key-indexed counting)

(4.5) MSD radix sort (after the second call to key-indexed counting)



2 PRINCETON UNIVERSITY

5. Graph search.

(5.1) 0 2 5 4 6 7 3 1 8 9

(5.2) 5 2 4 1 8 3 9 7 6 0

(5.3) 0 2 4 6 5 7 3 9 1 8

(5.4) ⊠ ⊠ ◻ ◻

Connected components and bipartiteness can be computed using either BFS or DFS.
Finding a topological ordering is specific to DFS. Finding a shortest path (fewest edges)
in a digraph is specific to BFS.

6. Minimum spanning trees.

(6.1) 0 10 20 30 50 70 110 120

(6.2) 20 30 10 50 70 0 120 110

(6.3) ◻ ⊠ ⊠ ◻

7. Shortest paths.

(7.1) 0 4 3 1 2 5

Dijkstra’s algorithm relaxes the vertices in increasing order of distance from s.

(7.2) 0 4 3 5 2 1

The topological order happens to be unique (because of the path 0→ 4→ 3→ 5→ 2→ 1).

(7.3) 150, 140

(7.4) ⊠ ◻ ◻ ⊠

8. Maxflow and mincut.

(8.1) 52

(8.2) 57

(8.3) A→ B → C → I →D → E → J , bottleneck capacity = 3

(8.4) {A,F,G,H} or {A,B,C,D,F,G,H, I}

9. Dynamic programming.

(9.1) F B C H G I J

The solution is unique.



COS 226 FINAL EXAM SOLUTIONS, SPRING 2022 3

10. Ternary search tries.

(10.1) A, AN, IN, PET, POT

(10.2) JADWIN, MATHEY, NASSAU, ORANGE

11. Data compression.

(11.1) 2/3

Each of the 16 0s in the input is replaced with one 8-bit count (16) and each of the 8 1s
in the input is replaced with one 8-bit count (8). So, run-length coding using 16 (8 + 8)
bits to represent 24 (16 + 8) input bits.

(11.2) A B B A B A

(11.3) ◻ ◻ ⊠ ⊠

(11.4) A B B A A B B A A B B

(11.5) A B C



4 PRINCETON UNIVERSITY

12. Orange and black directed cycle.

There are three key ideas to modeling the orange-and-black cycle problem as a single-source
shortest paths problem in a directed graph:

• Remove the edge x–y. Now, any path between x and y corresponds to a cycle containing
edge x–y.

• Replace each undirected edge with two anti-parallel directed edges. Now, any simple
directed path from x to y corresponds to a cycle containing edge x–y.

• Assign a weight of a weight of 1 to all edges v → w with vertex w colored orange. Now,
the weight of a directed path is equal to its number of orange vertices (ignoring the color
of the first vertex in the path).

Final, Spring 2022

yʹ

xʹ

1 11 1

1

1

1 1

1

1

1

11

11

1

1

11

0

0

0

0

0

0

0

0

0

0

0 0

0
0 0

(12.1) The digraph G′ has V vertices, one vertex v′ for each vertex v in G. Identify vertex x′

as the source vertex.

(12.2) The digraph G′ has 2E − 2 edges. For each edge v–w in G other than x–y, include two
antiparallel edges v′ → w′ and w′ → v′ in G′. If v is colored orange, the weight of the
edge w′ → v′ is 1; otherwise its weight is 0. if w is colored orange, the weight of edge
v′ → w′ is 1; otherwise its weight is 0.

(12.3) The shortest path from x′ to y′ in G′ (plus the deleted edge) corresponds to the desired
cycle in G.

Alternative solutions. There are a few variants that also work:

• Assign a weight of 1 to any edge v′ → w′ with v orange (instead of with w orange).

• Assign a weight of 1 to any edge v′ → w′ with either v orange or w orange. This
effectively doubles the length of all paths, but doesn’t change the shortest paths.

• Use a weight other than 1. Any positive constant works.

• Identify vertex y′ as the source vertex (instead of x′). The edges are symmetric.

• Deletes edges of the form v′ → x′ or y′ → w′. These are optional (since the shortest path
from x′ to y′ won’t use them).

We note that the orange-and-black cycle problem can be solved in Θ(E +V ) time in the worst
case using a variant of breadth-first search. But the goal here is to model it as a classical
shortest path problem.



COS 226 FINAL EXAM SOLUTIONS, SPRING 2022 5

13. Equivalent BSTs.

The algorithm has three key steps:

• Uniquely identify a BST. For each BST, compute its level-order traversal to uniquely
identify it. You can think of each level-order traversal as a string of length m, where
each “character” in the string is a 64-bit integer. Here are the level-order traversals of
the four example BSTs:

– 50 20 80 10 30

– 50 20 99 10 30

– 50 20 80 10 30

– 50 10 80 20 30

• Sort. Sort the level-order traversals to bring equivalent BSTs together.

– 50 10 80 20 30

– 50 20 80 10 30

– 50 20 80 10 30

– 50 20 99 10 30

The main challenge here is that the alphabet is of size R = 264. So, we can’t directly
apply LSD or MSD radix sort since that would involve creating an array of length 264.
So, instead, treat each 64-bit integer as a sequence of eight 8-bit integers. Now, the
strings are of length 8m (instead of m) but the alphabet is of size R = 28 (instead of
264). Now, we can sort these “strings” efficiently using either LSD or MSD radix sort.

• Find equivalent BSTs. The sorting brings equivalent BSTs together. To check for
equivalent BSTs, it suffices to compare adjacent entries in the sorted order.

Each of the three steps takes Θ(mn) time in the worst case.

Alternative solutions.

• Other tree traversals. A BST can also be uniquely defined by its preorder or postorder
traversal. (Inorder traversal does not work because all BSTs on the same set of keys
have the same inorder traversals.)

• Different alphabets. We can treat each 64-bit integer as either a sequence of eight 8-bit
integers or as a sequence of 64 individual bits. Using R = 2 will be slower than using
R = 28, but only by a constant factor.

• Multiway trie. This wastes some space but still meets the performance requirements
(assuming you break up each 64-bit integer into 8 bytes (or 64 bits) so that R = 28 (or
R = 2) instead of R = 264).



6 PRINCETON UNIVERSITY

Partial-credit solutions.

• String concatenation. Use a StringBuilder to concatenate the decimal integers in a
BST traversal. Two non-equivalent BSTs may be incorrectly identified as equivalent,
e.g., the BSTs with traversals of [12, 345] and [1, 2345] would both result in "12345".
It’s important to treat each integer as a sequence of a fixed number of bits or bytes. A
variant of this approach that does work is to separate the decimal integers with spaces
(or some other delimiter) when concatenating. Now, the alphabet is effectively of size
R = 11.

• Compare-base sorting algorithms. Mergesort (or heapsort) makes Θ(n logn) string com-
pares in the worst case. Each compare takes Θ(m) time in the worst case, This leads to
a worst-case running time Θ(mn logn).

• 3-way radix quicksort. In the worst case, 3-way radix quicksort takes O(mnR) time.
If the alphabet size R were a small constant (e.g., 2 or 8 or 11), then this meets the
performance requirement. However, when R is astronomical (e.g., R = 264 and bigger
than n), you can’t treat it as a constant. For example, even when m = 1, all of the
partitioning steps could be degenerate. This would lead to a running time of Θ(n2) in
the worst case.


