
COS 226 Algorithms and Data Structures Fall 2021

Final Exam Solutions

1. Initialization. Don’t forget to do this.

2. Memory usage.

(2.1) 32 bytes

• 16 bytes object overhead

• 8 bytes for string reference

• 4 bytes for int

• 4 bytes padding

(2.2) ∼ 40n bytes

• ∼ 32n bytes for the n Suffix objects

• ∼ 8n for the array of n references

3. String operations.

(3.1) Θ(n4)

String concatenation takes time proportional to the length of the resulting string, so the
running time is Θ(1 + 2 + 3 + . . . + n2) = Θ(n4).

(3.2) Θ(n3)

String concatenation takes time proportional to the length of the resulting string, so each
iteration of the inner loop takes Θ(1+2+3+. . .+n) = Θ(n2) time, for a total of Θ(n3) time.
The outer loop, which repeatedly appends string of length n, takes Θ(n+2n+3n+. . .+n2) =

Θ(n3) time as well.

(3.3) Θ(n2)

Appending each character to the end of a StringBuilder takes Θ(1) amortized time.
So, starting from an empty StringBuilder, appending n2 characters takes Θ(n2) time.

4. String sorts.

(4.1) LSD radix sort (after 1 pass)

(4.2) 3-way radix quicksort (after the first partitioning step)

(4.3) LSD radix sort (after 2 passes)

(4.4) MSD radix sort (after the second call to key-indexed counting)

(4.5) MSD radix sort (after the first call to key-indexed counting)



2 PRINCETON UNIVERSITY

5. Graph search.

(5.1) 0 2 5 4 6 3 8 9 7 1

(5.2) 5 2 8 9 3 6 1 7 4 0

(5.3) No. The reverse of the DFS postorder (0 4 7 1 6 3 9 8 2 5) is a topological order.
A digraph has a topological order if and only if it has no directed cycle.

(5.4) 0 2 4 5 6 7 3 9 1 8

6. Minimum spanning trees.

(6.1) 0 10 20 40 50 80 100 110

(6.2) 10 20 50 40 80 0 100 110

7. Shortest paths.

(7.1) 0 1 3 2 5 4

Dijkstra’s algorithm relaxes the vertices in increasing order of distance from s.

(7.2) 0 3 1 2 4 5

The topological order happens to be unique (because of the path 0→ 3→ 1→ 2→ 4→ 5).

(7.3) 110, pass 2

8. Self-adjusting data structures.

This question was based on a guest lecture in Fall 2021.

(8.1) ◻ ⊠ ◻ ⊠

(8.2) ⊠ ◻ ⊠ ⊠

(8.3) ⊠ ◻ ◻ ⊠

(8.4) Bob Tarjan

9. Dynamic programming.

(9.1) A C D H L

The last three letters can be permuted in any order.

(9.2) Θ(n)



COS 226 FINAL EXAM SOLUTIONS, FALL 2021 3

10. Ternary search tries.

(10.1) I, IN, OF, TIP, TRUE, TRY

(10.2) JADWIN, MATHEY, NASSAU

(10.3) ⊠ ◻ ◻ ◻

11. Data compression.

(11.1) S P A R S E

(11.2) C C B B C C A D

(11.3) 41 42 81 83 82 85 80

(11.4) C A B

The compression ratios for A, B, and C are 16/255, 8, and 8/255, respectively.

(11.5) A B C

The compression ratios for A, B, and C are 1.4/8, 1.8/8, and 2/8, respectively.

12. Min-weight crossing edge.

(12.1) 0, 1, 4, 5 or 2, 3, 6, 7

(12.2) Remove edge e = v–w from the MST. This defines a cut, with the vertices in the con-
nected component containing v on one side and the vertices in the connected component
containing w on the other. This cut achieves our goal:

• By construction of the cut, e is a crossing edge.

• No other crossing edge f could have smaller weight because, if it did, we could replace
e with f in our MST and obtain a strictly lighter spanning tree—a contradiction.

To construct the cut efficiently:

• Create a new edge-weighted graph H with V vertices, adding all edges in the MST
except e.

• Run DFS in H from either vertex v or w.

• The marked vertices define one side of the cut.

In this application, DFS takes Θ(V ) time because the number of edges in H is V − 2,
not E.

Alternative solutions. There are a few variants that also work:

• Run DFS from any vertex—it doesn’t need to be v or w.

• Use BFS instead of DFS.

• Instead of creating H, run DFS in the MST graph, but modify DFS to skip over
edge e.

• When performing the graph search from either v or w, consider only those edges
whose weight is strictly less than the weight of e. (This might produce a different
cut than the approach discussed earlier.)



4 PRINCETON UNIVERSITY

13. Writing seminar preferences.

The key idea is to treat the preferences for each student as an 8-digit number over an alphabet
of size m. To check for duplicates:

• Sort the n numbers using LSD radix sort.

• Check adjacent entries for duplicates.

Sorting takes Θ(m + n) time because R = m and the number of characters per string is
a constant. Checking adjacent entries takes a total of Θ(n) time because comparing two
strings, each of length 8, takes O(1) time.

Partial-credit solutions.

• MSD radix sort. While it makes Θ(m + n) calls to charAt() in the worst case, it can
still take Θ(mn) time, e.g., if there are Θ(n) pairs of students with equal preferences
lists.

• Compare-base sorting. Mergesort (or heapsort) makes Θ(n logn) compares in the worst
case. Each compare takes constant time, so the overall running time for sorting is
O(n logn).

• 3-way radix quicksort. All of the partitions might be degenerate, which could lead to
Θ(n2) time in the worst case. Even probabilistically, the expected running could be
Θ(n logn) if Θ(n) students have different first choices.

• Multiway trie. Inserting the n strings into an R-way trie uses Θ(Rn) space (and time).
In this application, R =m, which leads to Θ(mn) space (and time), not Θ(m + n).


