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ABSTRACT
Low-Power Wide Area Networks (LP-WANs) are an attractive

emerging platform to connect the Internet-of-things. LP-WANs

enable low-cost devices with a 10-year battery to communicate

at few kbps to a base station, kilometers away. But deploying LP-

WANs in large urban environments is challenging, given the sheer

density of nodes that causes interference, coupled with attenuation

from buildings that limits signal range. Yet, state-of-the-art tech-

niques to address these limitations demand inordinate hardware

complexity at the base stations or clients, increasing their size and

cost.

This paper presents Choir, a system that overcomes challenges

pertaining to density and range of urban LP-WANs despite the lim-

ited capabilities of base station and client hardware. First, Choir pro-

poses a novel technique that aims to disentangle and decode large

numbers of interfering transmissions at a simple, single-antenna

LP-WAN base station. It does so, perhaps counter-intuitively, by

taking the hardware imperfections of low-cost LP-WAN clients

to its advantage. Second, Choir exploits the correlation of sensed

data collected by LP-WAN nodes to collaboratively reach a far-

away base station, even if individual clients are beyond its range.

We implement and evaluate Choir on USRP N210 base stations

serving a 10 square kilometer area surrounding Carnegie Mellon

University campus. Our results reveal that Choir improves network

throughput of commodity LP-WAN clients by 6.84 × and expands

communication range by 2.65 ×.
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1 INTRODUCTION
Recent years have witnessed Low-Power Wide Area Networks (LP-

WANs) emerge as an attractive communication platform for the

Internet of Things (IoT) [37]. LP-WANs enable low-power devices

(milliwatts) to transmit at low data rates (kilobits per second) over

long distances (several kilometers). LP-WANs are an ideal vehicle

for cheap, low-power IoT devices such as sensors that have limited

power budget (e.g. a ten-year lithium ion battery) but also send

few kilobits per second of sensed data to the cloud. Consider future

smart cities where a few LP-WAN towers gather sensor data from

a large number of low-power devices in the city. Such devices can

exploit this reliable infrastructure to communicate, no matter where

they are placed, without ever being charged during their lifetimes.

Several LP-WAN proposals have emerged in the past few years,

including commercial technology for the unlicensed 900 MHz band

(LoRaWAN [28], SigFox [31]) as well as open standards for reusing

cellular infrastructure (LTE-M [25], NB-IoT [34]).

Yet, deploying city-scale LP-WAN networks is challenging for

two reasons: the density of deployment and the nature of urban

environments. First, the sheer density of deployment of LP-WAN

nodes means that transmissions from a large number of radios will

often collide. Such collisions adversely impact LP-WANs, drain-

ing battery life and wasting precious air time and spectrum in a

dense network. Second, deployments in urban areas cause the al-

ready weak signals of low-power nodes to be further attenuated by

buildings and other obstacles before reaching the base station. This

greatly reduces the range of LP-WAN sensors from over 10 km in

rural areas to 1-2 km or less in urban settings [2, 4, 41].

At the root of these challenges is the limited capability of LP-

WAN hardware, both at the base station and clients. On one hand,

the limited power budget and low cost of LP-WAN clients make it

challenging to deploy sophisticatedMAC and PHY-layer schemes to

avoid collisions [12, 13]. On the other hand, LP-WAN base stations

struggle to resolve a large number of such collisions. Indeed, state-

of-the-art techniques such as uplink MU-MIMO [6, 26, 40] can

at best separate as many sensor nodes as there are base station

antennas (atmost 3-4 today due to limits on the size and cost [16, 27,

39]). As a result, there remains a fundamental disconnect between

the vision of dense, city-wide LP-WANs and the capabilities of

state-of-the-art LP-WAN hardware.

This paper aims to bridge this disconnect – it builds Choir, a

solution to overcome the challenges of dense, city-scale LP-WANs
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despite the limited capability of client sensor nodes and base sta-

tions. First, we resolve collided transmissions from dense deploy-

ments of LP-WAN clients at an LP-WAN base station, even if it

is not MIMO-capable. We demonstrate how Choir improves the

throughput, latency and battery life of LP-WAN nodes. Second,

Choir improves the range of teams of low-power LP-WAN sensors

in urban environments. We demonstrate how teams of co-located

sensors can communicate together with an LP-WAN base station,

even if they are individually beyond its reception range. Choir

is fully implemented at the LP-WAN base station without requir-

ing hardware modifications to LP-WAN sensors. We integrate and

evaluate Choir with low-power embedded sensing hardware and

demonstrate end-to-end performance in a large neighborhood sur-

rounding Carnegie Mellon University (CMU) campus.

At the heart of our approach to disentangle collisions at the

base station is a strategy that exploits hardware imperfections of

low-cost components in LP-WAN radios. Specifically, the signals

transmitted by such hardware produces offsets in time, frequency,

and phase. Choir proposes algorithms that use these offsets to sepa-

rate and decode collisions from users. It achieves this by leveraging

properties of the physical layer of LoRaWAN LP-WAN radios that

transmits signals in the form of chirps, i.e., signals whose frequency

varies linearly in time. We show how hardware offsets, whether in

time, frequency or phase manifest as distinct aggregate frequency

shifts in chirps from each transmitter. We then filter the received

signal using these shifts to separate signals from different transmit-

ters. Choir then overcomes multiple challenges to decode useful

data packets from each filtered signal component. First, it develops

novel algorithms to separate bits of data from hardware offsets, both

of which are embedded in frequency shifts of chirps. Second, it uses

the precise values of the offsets of the separated signals to identify

which bits of decoded data belongs to which client to reconstruct

the packet over time. Given that Choir disentangles sensors in the

time and frequency domain as opposed to the antenna domain (i.e.,

MIMO), it can be implemented on a single-antenna base station. As

a result, Choir directly improves the throughput of dense urban

LP-WANs by decoding transmissions from multiple nodes simulta-

neously with minimal coordination overhead. It further enhances

both latency and battery life of LP-WAN clients by removing the

need for retransmissions.

Beyond dealing with density, we show how hardware offsets

between transmissions can boost the range of LP-WANs. Specifi-

cally, we consider transmissions from teams of LP-WAN sensors

that are individually beyond the range of the base stations, but

are physically co-located. Such sensors are likely to record similar

readings resulting in overlapping values for the most-significant

bits of sensed data. Choir devises a mechanism for such overlap-

ping most-significant bits to be recovered to help obtain a coarse

view of sensed data in a given area. We propose a simple modifi-

cation of the LP-WAN PHY that allows overlapping chunks of bits

collected by sensor nodes to be transmitted concurrently as overlap-

ping chunks of signals that are received at higher aggregate power.

Choir develops a novel algorithm to achieve this in software with-

out requiring expensive hardware modifications at the LP-WAN

clients to tightly synchronize their transmissions. We generalize

our approach to build a system that provides a coarse-grained view

of sensors further away, while improving throughput and providing

(a) (b)

Base Station:
S469AM-915 Antenna
USRP N210
ZX60-0916LN+ LNA
Power Supply
Jacksonlab Fury Clock

LoRaWan Node:
SX1276MB1LAS Client
NUCLEO-L152RE Platform

Figure 1: LP-WAN Setup: Depicts Choir’s USRP N210 based LP-WAN base
station and commodity LoRaWAN clients.

a fine-grained view of sensors near the base station. We further

discuss how the concepts in this paper apply to emerging and future

LP-WAN standards such as NB-IoT [34] and SIGFOX [31].

We implement Choir on a testbed of LoRaWAN LP-WAN radios.

We deploy LP-WAN base stations (see Fig. 1) on the top floors

of buildings covering a large area spanning 10 square kilometers

around CMU campus. We emulate LP-WAN base stations using

USRP N210 software radios. Our commodity LP-WAN client devices

transmit measured temperature and humidity data, and are spread

across CMU campus. We compare our system with a baseline that

employs uplink MU-MIMO [38] as well as different modes of the

standard LoRaWAN PHY and MAC [28]. Our results reveal the

following:

• Density: For 30 nodes placed over 100 randomly chosen

locations, with as many as 10 nodes transmitting data at any

given time, Choir achieves a throughput gain of 6.84 × over

standard LoRaWAN. It further achieves a 4.88 × reduction

in latency and 4.54 × reduction in number of transmissions

per decoded data packet.

• Range: For a team of up to 30 Choir nodes integrated with

temperature sensors across four floors in a large building,

we retrieve sensor data from distances as much as 2.65 km

with loss of resolution of 13.2 %, despite the fact that each

sensor can be heard individually no further than 1 km away

(a gain of 2.65 ×).

Contributions: This paper presents Choir, a novel system that

exploits the natural hardware offsets of LP-WAN clients to both

disentangle and decode their collided transmissions using a single-

antenna LP-WAN base station. Choir allows teams of LP-WAN

sensor nodes transmitting correlated data to reach an LP-WAN base

station, despite being individually beyond communication range.

Our system is fully implemented and deployed on a large outdoor

testbed spanning 10 square kilometers.

2 RELATEDWORK
Low-Power Wide-Area Networks: Private enterprises such as

LoRaWAN [28] and SigFox [37] have developed LP-WAN chips that

use extremely narrow bands of unlicensed spectrum for diverse set

of applications. 3GPP has also developed two LP-WAN standards

for cellular base stations, namely, LTE-M [25] and NB-IOT [34].

Common to all LP-WAN technologies is the limited power budget

and bandwidth, hardware simplicity and low cost of client nodes.

Multiple deployment efforts recognize the challenge of limited
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range of LP-WAN radios in urban environments [2, 8] as well as

collisions in large-scale settings [2, 9, 11, 24].

LoRaWAN in particular uses chirp spread spectrum (CSS) for

transmitting data due to its low power requirements, hardware sim-

plicity, and performance under multipath and narrowband interfer-

ence. However, we emphasize that LoRaWAN, like other CSS-based

technologies [14, 42, 46] in radar or 802.15.4a divides chirps in time

using TDMA, CSMA or Aloha and does not decode collisions [8],

unlike say CDMA
1
[43]. This is because decoupling data from col-

lisions of chirps in the presence of frequency and timing offsets

is fundamentally challenging (we elaborate on these challenges

and our solutions to overcome them in Sec. 4). Indeed, there has

been much work on collision avoidance and MAC protocols [14, 46]

for CSS for precisely this reason. However, our approach aims to

directly leverage hardware offsets to decode CSS collided transmis-

sions, as well as extend communication range.

Decoding Collisions in Wireless Networks: There has been

much past work on decoding collisions in wireless networks, par-

ticularly for cellular networks [15, 47], RFIDs [44] and wireless

LANs [7, 18, 40]. Much of this work relies on using multiple an-

tennas on wireless nodes be it MU-MIMO on the downlink [6],

uplink [40] or fully distributed MIMO [33]. Unfortunately, the max-

imum gain of these systems is limited by the number of antennas

on the base station (at best 3-4 today due to limits on size and

cost [16, 27, 39]). However, our system is able to separate collisions

even with a single-antenna base station.

Our proposed research perhaps is most closely related to systems

that were designed to decouple collisions across time and frequency.

ZigZag [19] decodes multiple collisions by intelligently separating

them in time. It requires multiple collisions from the same end-user

devices to decode data, unlike our work which strives to separate

data from a single collision. Recent work has also proposed the use

of carrier frequency offset to count transmissions from active RFID

tags [1]. They require the frequency offsets to be much larger than

bandwidth to separate simultaneous transmissions from different

narrow-band users, which, while true for active RFIDs, does not

hold for LP-WAN radios [28]. In contrast to these systems, our

approach separates even a single collision of transmissions from

multiple nodes that overlap in both time and frequency. It achieves

this by exploiting both timing and frequency offsets between the

nodes as well as properties of the LP-WAN PHY-layer.

Wide-Area Wireless Sensor Networks: Several proposals have

been made for better MAC protocols to avoid collisions in sensor

networks, including improved TDMA based methods [22, 36] and

collision-recovery methods [19, 23, 45]. Such schemes utilize either

customized hardware [19, 23] or improved sensor coordination [36,

45] to recover from or avoid collisions.

Our work is also related to systems that exploit correlation of

sensor data to improve performance. Glossy [17] develops hardware

and software at sensors to improve time-synchronization and ex-

ploit constructive interference of sensed data from different 802.15.4

transmitters. Past research has also proposed modifications to the

PHY-layer protocols such as the use of compressed sensing [30]

to exploit correlation of sensor data and improve performance.

1
A LoRaWAN base station can decode collisions occurring between nodes that utilize

different data rates (there are only 4 different data rates in the uplink in the USA).

However, it can not handle collisions occurring on a given data rate.

(a)                                   (b)

Figure 2: LP-WAN PHY: LoRaWAN uses chirps to depict transmitted bits.

Our work, while building on these systems, differs in that it seeks

to exploit correlation of sensor data without requiring hardware

modification to LP-WAN sensor radios or the LP-WAN PHY layer.

In doing so, it achieves the gain of exploiting correlated sensor

data without introducing complexity in PHY-layer hardware and

protocols.

3 A PRIMER ON LP-WANS
This section provides a brief primer on the LoRaWAN LP-WAN

protocol. LoRaWANs operate in the unlicensed 900 MHz band with

bandwidths of up to 500 kHz. LoRaWAN base stations transmit at

powers up to 1 Watt while clients transmit few milliwatts at best.

The PHY and MAC layers are designed with this power asymmetry

in mind.

Physical Layer: The LP-WAN PHY encodes information in the

form of multiple “chirps” that are signals whose frequency varies

linearly in time over the available bandwidth. Fig. 2(a)-(b) illustrate

two such chirps depicting bits “0” and “1” in the time domain and

the corresponding spectrogram. Different bits are encoded by initi-

ating the chirps at different frequencies, for instance “0” at −62.5

kHz and “1” at 0 kHz over a bandwidth of 125 kHz. LoRaWAN

uses chirps, as they occupy limited instantaneous bandwidth and

therefore consume very little power in communicating bits over

long distances. Further, they are robust to narrowband interferers.

Rate Adaptation: While Fig 2 encodes one bit per chirp, Lo-

RaWAN supports larger data rates by increasing the number of

possible starting frequencies of a chirp to pack in more bits. For

instance, a transmission with 3-bits per chirp would choose from

one of 2
3
possible starting frequencies. The LoRaWAN standard

allows as many as 12-bits encoded in a chirp. LoRaWAN base sta-

tions program each clients to operate on a suitable data rate based

on its received signal-quality.

MACLayer: As described in Sec. 2, the LoRaWANMAC is designed

to avoid collisions and divide air time between competing users.

LoRaWAN typically employs two modes to do this for low-power

nodes [28]: (1) An Aloha MAC that allows nodes to transmit as

soon as they wake up and apply random exponential back-off, when

faced with a collision. While simple, Aloha scales poorly in dense

networks due to frequent collisions [32]. (2) A TDMA scheduler

where the base station allots predetermined slots to clients. The

choice of scheme depends on the application (e.g. whether sensed

data is bursty) and client power constraints.
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(a)                           (b)

(c)                           (d)

Figure 3: Decoding collisions: Spectrogram of two collided chirps, and the
corresponding Fourier transform peaks.

4 CHOIR IN A NUTSHELL
In this section, we provide a brief overview of Choir’s core algo-

rithm. At a high level, our goal is to disentangle wireless signal

measurements from colliding commodity LP-WAN transmitters

with a single-antenna LP-WAN base station.

The core concepts behind Choir are best understood with an

example. Consider two LP-WAN radios, both transmitting the same

sequence of n bits to an LP-WAN base station. We assume these n
bits are encoded in a single chirp as in Fig. 2 by each transmitter.

Suppose the two transmissions are aligned perfectly in time, induc-

ing a collision between their chirps. Given that the two LP-WAN

radios encode their bits in the exact same way, the resulting chirps

would be identical. At first blush, one would assume that these

chirps would combine either constructively or destructively upon

colliding. This would be problematic for two reasons: First, the

combined signal would be indistinguishable from a single trans-

mitter with higher power, rendering the two chirps from the two

transmitters impossible to be separated. Second, if the signals add

up destructively, one would not be able to recover either of their

transmissions.

Choir recognizes that in practice, however, the two signals can be

separated by exploiting the natural hardware imperfections of the

two radios. Specifically, signals from the two transmitters are likely

to experience a small frequency offset, due to a difference in the

frequency of their oscillators. This would result in the two chirps

being slightly offset in frequency. Fig. 3 depicts the spectrogram of

two collided chirps from two commodity LP-WAN radios gathered

by a software radio. Note that one can observe two distinct chirps

that are shifted in frequency, despite the fact that they both convey

the same information. At this point, we can separate the two chirps

using a simple process: (1) We first multiply the received signal by

a down-chirp
2
that would result in two tones at two frequencies.

(2) We then apply a Fourier transform of size 2
n
, which results in

two peaks corresponding to the two transmissions. In Fig. 3(c), we

observe two peaks at two distinct bins, corresponding to the two

transmissions. One can then repeat this process for subsequent

received chirps to disentangle transmissions from the two users.

While the above approach succeeds in separating the two trans-

mitters, it fails to decode useful data. To see why, recall that Lo-

RaWAN encodes data by shifting chirps in frequency. Specifically,

2
A down-chirp, i.e., a chirp whose frequency decreases with time, is merely the complex

conjugate of the corresponding up-chirp that was used for CSS modulation.

n bits are encoded as 2
n
distinct chirps, each starting at a unique

frequency. Consequently, the location of the peak corresponding

to each transmitter is given by the sum of this frequency offset

and the underlying data transmitted by the user. To illustrate the

problem, observe that Fig. 3, has two peaks at bins 207 and 257.

Such a collision could both be interpreted as identical data and a

frequency offset of 50 bins, or zero frequency offset and encoded

data differing by 50 bins, or any of the many options in between.

Choir overcomes this problem by relying on the fact that while

frequency offset remains constant over a packet between chirps,

data does not. To see how this is useful, consider two packets

consisting of three symbols (i.e., three chirps) that collide from two

users. We assume that the first symbol is a known preamble shared

by all users, while the second and third carry useful data. As a

result, peak locations from the first symbol can be used to estimate

the frequency offset of the first and second user respectively. These

frequency offsets can now be subtracted from peaks in subsequent

users to capture data corresponding to the first and second user

respectively.

An important question still remains – How do we know who

is the first and second user in each data symbol? Knowing this is

necessary to map the correct frequency offset to the correct peak.

More importantly, it is required to avoid mixing up the data bits of

the two transmitters when reporting the decoded data.

Our solution to resolve this challenge relies on the fact that data

bits occur on integer peak locations in the Fourier transform, while

frequency offsets need not. Put differently, frequency offset is a

physical phenomenon and does not need to be a perfect multiple

of the size of a Fourier transform bin. As a result, the peak loca-

tions can be an arbitrary fraction of a Fourier transform bin. To

illustrate, suppose we observe two data symbols where the peaks

are at 207.2, 257.6 for the first symbol and 81.6, 200.2 for the second

symbol. While the integer parts of these peak locations depend on

both data and frequency offset, the fractional part depends only on

frequency offset, which remains consistent across symbols. Conse-

quently 207.2 and 200.2 must map to one user while 257.6 and 81.6

belong to the other. Choir therefore can use the fractional part of

peak locations to distinguish between peaks corresponding to the

different users in each symbol, prior to decoding their data bits.

The rest of this paper focuses on achieving three important

objectives to realize the above design:

• Separating Multiple Users: First, we must estimate frequency

offsets accurately to within a fraction of each bin of the

Fourier transform. In doing so, we must account for and

actively leverage leakage between peaks that is produced

due to the frequency offsets that are non-integer multiples of

a Fourier transform bin. We then use these frequency offsets

to separate collisions of multiple users. Sec. 5 describes our

approach in greater detail.

• Tracking Users using Time and Frequency Offsets: While our

discussion so far assumes that signals collide in a perfectly

synchronized manner in time, collisions can occur with ar-

bitrary timing offsets in practice. We overcome this by ex-

ploiting the duality between time and frequency in chirps:

an offset in time manifests as an equivalent offset in fre-

quency. Our approach in Sec. 6 describes how we exploit this
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property to account for timing offsets. We also explain how

tracking timing offset, frequency offset as well as channels

across symbols help us identify which user is which between

collisions.

• Exploiting Correlated Data: Our discussion thus far has fo-

cused on decoding uncorrelated data bits transmitted by two

users. However, sensor data is often correlated resulting in

nodes transmitting identical chunks of bits. In Sec. 7 we de-

sign algorithms to recognize and exploit such scenarios to

boost the range of sensors that are otherwise beyond the

communication range of the base station.

5 SEPARATING COLLISIONS
This section describes how Choir can separate transmissions from

multiple client nodes that utilize the same spreading factor
3
(we

discuss the case of different spreading factors in the concluding

remarks of Sec. 5.2) and whose transmissions are synchronized

perfectly in time (we discuss the effect of timing offset in Sec. 6) .

As explained earlier, our approach relies on accurately estimating

and exploiting the frequency offset of individual clients. However,

estimating frequency offsets accurately in the presence of noise

remains a challenge. To illustrate the need for this, we revisit our

example from Sec. 4. As shown in Fig. 3(c), signals from the two

transmitters manifest as two distinct peaks shifted owing to fre-

quency offset. At this point, we can directly read-off the locations

of the peaks to estimate the respective frequency offset of the two

nodes. Further, we can filter out the signals around each of the two

peaks to obtain the signals from the respective transmitters.

While the above approach is simple, it is prone to inaccuracies

and vulnerable to interference. To see why, recall that the estimate

of frequency offsets from peak locations is only accurate to within

one FFT bin. However, frequency offset is a physical phenomenon

that need not be an integer multiple of an FFT bin. This means that

the above method loses any information pertaining to frequency

offset that is a fraction of one FFT bin. Failing to account for frac-

tional frequency offsets has two important implications: (1) First,

as explained in Sec. 4, the fractional part of the frequency offset

is extremely useful in identifying which user is which across sym-

bols; without this, the data corresponding to a single user cannot

be tracked over time. (2) Second and more fundamentally, having

an inaccurate estimate of frequency offset leads to an inaccurate

estimate of wireless channels and thus, of the decoded data. Specif-

ically, it causes peaks corresponding to one transmitter to “leak”

into others, causing interference. Indeed, this leakage is particularly

acute when one transmitter is significantly closer to the receiver

compared to the other. This causes one peak to be buried due to

noise stemming from another (the so-called near-far effect [20]).

Below, we detail our solution to both of these challenges to estimate

frequency offsets as well as separate and decode data.

5.1 Measuring Accurate Frequency Offset
Our solution to accurately measure the fractional part of the fre-

quency offset is based on exploiting the leakage of one peak to the

3
The spreading factor denotes the number of bits that can be encoded per symbol. Each

spreading factor maps to a particular chirp used for CSS modulation and demodulation

and it determines the data rate.

other. In order to illustrate this with an example, let us revisit the

scenario in Fig. 3 where the two transmitters are separated by a

fractional value of frequency offset corresponding to 50.4 bins. The

figure however depicts two clear peaks separated by exactly 50 bins.

Indeed the remaining separation of “0.4” is encoded in the smaller

peaks that leak around the surrounding bins. To better understand

and analyze this leakage, let us perform a Fourier transform of

the collision between the two transmitters over a wider window

(10× larger) by zero-padding the signal. Fig. 3(d) plots the resulting

Fourier transform output. Observe that we now have “sinc” func-

tions centered around each peak, a property that stems from the

Nyquist sampling theorem. We now observe that the smaller peaks

around the main two peaks are produced due to the side-lobes of

these sinc functions. Notice that these side lobes are periodic, at

an interval of exactly one FFT bin. Indeed, if the two main peaks

were apart by an integer multiple, the zeros of the side lobes would

overlap perfectly with the main peaks, ensuring zero leakage. In

contrast, a fractional separation between peaks causes the side lobes

of one peak to interfere with the main lobe of another peak, distort-

ing its shape and location. Consequently, identifying the location

of the maxima of the two sinc main peaks provides only a coarse

estimate of the frequency offset. In the above example, we observe

the two peaks separated by 50.3 bins – an improvement over the

previous estimate of “50” bins, but a value that is still erroneous.

To obtain a more fine-grained estimate of the frequency offset,

we explicitly model the leakage of the sinc function of one client’s

signal into the other. First, we estimate the wireless channels of

each transmitter, given our coarse estimate of its frequency offset.

We then re-construct the received signal using the obtained wireless

channels and our frequency offsets. We subtract the reconstructed

wireless signal from the actual one to obtain the residual signal. The

power of this residual function is an estimate of the goodness of

our current frequency offset estimates. We then jitter our estimates

of frequency offset and repeat the process, until the power of the

residual is minimized. We show that the power of residuals across

frequency offset values is locally convex, allowing us to search over

the space of frequency offsets efficiently.

Analysis: We now illustrate our approach to mathematically esti-

mate frequency offsets from the collision of two transmitters send-

ing an identical symbol, e.g. a preamble sequence. Let h1 and h2

denote the wireless channels and f1 and f2 denote the frequency off-
sets of two transmitters whose chirps collide in time. Let C denote

the chirp in the preamble transmitted by both clients that spans a

bandwidth of B. Then, we can write the time domain representation

of the collision as:

y (t) = h1ej2π f1tC + h2ej2π f2tC ⇒ yC−1 = h1ej2π f1t + h2ej2π f2t
, (1)

where C−1
denotes the down-chirp corresponding to the up-chirp

C. Ideally, the frequency domain representation of the above signal

(obtained via FFT), denoted F (yC−1), should result in two peaks

at frequencies f1 and f2. However, in practice f1 and f2 are unlikely

to be at integer boundaries of the FFT bin, as explained earlier. As

a result, the peaks of the Fourier transform will likely be close, but

not equal, to f1 and f2. Let us denote the observed peak locations

as
˜f1 and ˜f2, respectively. One can then estimate the approximate

wireless channels
˜h1 and

˜h2 that best fit Eqn. 1. Fortunately, given

that Eqn. 1 is linear, this can be obtained using a least-squares closed

313



SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA R. Eletreby, D. Zhang, S. Kumar, and O. Yağan

Figure 4: Residual Function: Depicts the residual function for a represen-
tative trace with two colliding clients. The function is locally convex.

form as shown below:

[
˜h1

˜h2] = (ETE)−1ETyC−1
,where, E = [ej2π

˜f1t ej2π
˜f2t

] (2)

We can then estimate the goodness of fit of the estimated fre-

quency offset from the observed values by capturing how well the

above channels fit the received signal. Specifically, we measure the

difference between the received signal and the reconstructed signal

based on
˜f1, ˜f2 as

R( ˜f1,
˜f2) = | |yC−1 − ( ˜h1ej2π

˜f1t + ˜h2ej2π
˜f2t ) | |2 (3)

Clearly, from Eqn. 1 and Eqn. 3 above, the residual R( ˜f1,
˜f2) will

be minimized when
˜f1 = f1 and

˜f2 = f2. Our solution therefore

re-estimates the above residual for frequency offsets in the neigh-

borhood of
˜f1 and

˜f2, and identifies the offsets at which the residual

is minimized. Namely, we compute the updated frequency offsets

¯f1 and
¯f2 via

(¯f1,
¯f2) = arg min

(f1∈( ˜f1−∆,
˜f1+∆),f2∈( ˜f1−∆,

˜f2+∆))
R(f1, f2) (4)

where ∆ is the bin-size of the FFT. Repeating the above steps exhaus-

tively over all frequency offsets can be computationally expensive.

However, in practice, the residual function R(f1, f2) is locally convex,
allowing for more efficient search strategies. Intuitively, the local

convexity stems from the fact that wireless channels themselves

are physical phenomena and therefore tend to be continuous and

differentiable. To illustrate, Fig. 4 plots a representative example of

the residual function for a collision of two LoRaWAN transmitters

from our experiments in Sec. 9. This allows us to apply stochas-
tic gradient-descent algorithms [29] on the residual function with

randomly chosen initial points that are likely to converge to the

global minimum. Algm. 1 provides the pseudo-code of our approach.

We note that while the discussion above focuses on two colliding

transmitters, it can be readily generalized to multiple collisions.

5.2 Accounting for the Near-Far Effect
While the previous discussion assumes that one can obtain a coarse

estimate of the frequency offset by detecting peaks in the Fourier

transform, this is often not the case. Consider teams of colliding

clients where some are physically closer to the base station com-

pared to others. The nearby users will have clear peaks that are

readily discernible from the Fourier transform. The further away

users, however, may have significantly weaker peaks that are com-

parable to the side-lobes of the nearby transmitters. Indeed, it is

quite possible that transmissions from users are missed altogether.

This is essentially a near-far problem where strong receptions from

nearby transmitters overwhelm weaker transmitters [20].

At first blush, one might consider directly employing successive

interference cancellation [21] as a solution to overcome this prob-

lem. This method estimates and extracts signals of the strongest

transmitter from the collision, and repeats this process for the sec-

ond strongest transmitter, and so on, until no transmitters remain.

However, this approach fails to eliminate leakage between a set of

transmitters of similar power levels. In contrast, our approach to

model and eliminate leakage as in Sec. 5.1 above gets rid of inter-

ference between transmitters, but is susceptible to missing weak

clients altogether.

Our approach therefore strives to strike a balance between mod-

eling leakage and recovering weak clients to get the best of both

worlds. We rely on the fact that while interference from strong

transmitters to weaker ones (and to each other) is likely to be high,

the opposite is unlikely to be true. This leads us to apply successive

interference cancellation in phases, as opposed to one transmitter

at a time. Specifically, our approach first measures frequency offset

and channels of all the strong transmitters whose peaks are dis-

cernible simultaneously, as explained in Sec. 5.1 above. We then

subtract the signals of these transmitters from our received signal

to eliminate interference to any weaker clients whose peaks were

overwhelmed by these transmitters.

We note that our approach, like traditional outdoor networks, is

always limited by the resolution of the analog-to-digital converter.

As a result, extremely weak transmitters are likely to be missed

if they are not registered by the analog components. We discuss

extending communication range for such transmitters in Sec. 7.

Decoding Data from Collisions: Next, we note that once the

wireless channels and frequency offsets are estimated, decoding

data is extremely simple. Specifically, consider collisions of two

transmitters synchronized in time whose data as well as preamble

symbols collide. We first estimate the peak locations, i.e. frequency

offsets,
˜f1 and

˜f2 averaged across each symbol of the preamble. We

then repeat this process for the data symbol, where peak locations

are given by d1 + ˜f1 and d2 + ˜f2, a sum of both the frequency offsets

and the data (d1, d2). One can then subtract the known frequency

offset from these values to obtain the data. Further, one can use the

fractional part of the frequency offset (see Sec. 4) to infer which of

these data bits maps to which user across symbols. In Sec. 6 below,

we elaborate how timing and phase offsets can further be used to

achieve this mapping accurately.

Finally, five additional points are worth noting: (1) Our system re-

lies on frequency offsets of LP-WAN radios to remain stable within

a packet (∼ 10 ms) but diverse across clients, owing to hardware

differences. Our results in Sec. 9.1 show that this is indeed the case

across a large number of LoRaWAN boards. While LoRaWAN is

the only available LP-WAN platform in the U.S. today, we expect

competing technologies to have similar characteristics, given that

they use similar inexpensive components [31]. (2) While the above

approach is tied to LoRaWAN’s chirp-based PHY, the notion of

using frequency offsets to separate transmissions broadly applies

to other LP-WAN technologies such as NB-IoT [34] and SigFox [31].

Indeed, given that these technologies use an ultra-narrowband PHY,
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we expect their bandwidth to be far lower than frequency offset

that allows filtering their transmissions based on hardware offsets

significantly simpler. It is worth noting, however, that timing offsets

do no necessarily map to frequency offsets in these technologies,

thus Choir would have to be modified in accordance. (3) While our

system allows collisions from multiple transmitters to be decoded,

its gains are not unbounded. Gains are limited by noise and the

possibility of overlapping frequency offsets that increases with col-

lisions from a larger number of transmitters. Our results in Sec. 9.2

measures the scaling limits of Choir. (4) The current implementa-

tion of LoRaWAN allows simultaneous decoding of collided data

packets that were transmitted across different orthogonal spreading
factors. Such a feature is made possible due to the orthogonality

of the chirps associated with the different spreading factors. In

particular, a packet transmitted at a given spreading factor can only
be demodulated with a unique chirp associated with this spreading

factor. This form of diversity improves the overall data rate as it

allows parallel decoding of collided data packets. Choir considers

the extreme case of a congested network utilizing a single spreading
factor, and a single antenna. However, Choir can indeed benefit

from i) a base station utilizing multiple antennas (see Sec. 9.5), or ii)

a network employing different spreading factors. In particular, con-

sider 5 LP-WAN sensors simultaneously transmitting data packets

with spreading factors 7, 7, 8, 8, and 9, respectively. The base station

demodulates the received data stream using the unique chirps asso-

ciated with each spreading factor. In particular, let C7, C8, and C9

be the chirps associated with spreading factors 7, 8, and 9 respec-

tively, and let y denote the received signal. Consider y7 = yC−1

7
,

y8 = yC−1

8
, and y9 = yC−1

9
. By the orthogonality of C7, C8, and C9,

it is clear that y7, y8, and y9 would only contain the part of the data

transmitted with spreading factors 7, 8, and 9, respectively
4
. At this

point, the base station can run Choir to the three independent data
streams y7, y8, and y9 to disentangle possible collisions occurring at

each of these different spreading factors. Clearly, the orthogonality

of the chirps resulting from utilizing different spreading factors

alleviates the collisions, and avoids the complexity and scalability

issues associated with having all collisions occurring on a single

spreading factor. (5) The objective of Choir is to handle unintended

collisions among LoRaWAN nodes. As for potential collisions be-

tween LoRa and other technologies, we rely on the fact that LoRa

utilizes CSS as a form of spread spectrum that makes it robust to

cross-technology interference similar to CDMA systems.

6 MITIGATING TIMING OFFSETS
Our discussion so far assumes that clients transmit their packets

coherently in time. In this section, we describe our approach to

estimate and actively exploit the natural timing offsets between

transmissions. We then use timing and frequency offset estimates,

along with wireless channels to map which bits belong to which

users within a packet.

6.1 Exploiting Timing Offsets
We exploit timing offsets by leveraging the properties of the chirp

spread spectrum used by LoRaWAN radios. In particular, we use

4
This is similar to how LoRaWAN currently demodulates collided data transmitted

with multiple spreading factors.

Algorithm 1 Decoding collisions using Choir

PreambleLen = ℓ, SpreadingFactor = SF
SymSize = 2

SF

FFTLen = 10 × SymSize
while SymCount < ℓ do

DemodSym = Symbols(SymCount). ∗ DownChirp
n = NumPeaks(FFT (DemodSym, FFTLen))
[
˜f1, . . . ,

˜fn] = FindPeaks(FFT (DemodSym, FFTLen))
[
˜h1, . . . ,

˜hn] = LeastSqares([ ˜f1, . . . ,
˜fn])

[f
1
, . . . , f n] = arg min

(
f1∈
(
˜f1−∆,

˜f1+∆
)
,. . .,fn∈

(
˜fn−∆,

˜fn+∆
))
R([ ˜f1, . . . ,

˜fn])

SymCount = SymCount + 1

end while

the fact that chirps, by definition, are signals whose frequency in-

creases linearly with time. This means that any offset in time of

a received signal chirp can be equivalently interpreted as a corre-

sponding offset in frequency. Given that our approach corrects for

and exploits frequency offsets, it remains immune to timing offsets

as well.

Analysis. To demonstrate why this is the case, let us consider

chirps (symbols) from two different clients that collide in time. Let

us assume the two symbols in Eqn. 1 are off by a shift in time of ∆t1
and ∆t2, respectively. Then a shift in time of ∆t is akin to a shift in

frequency of B∆t/T . This means that, in the presence of frequency

offset, the received wireless signal can be re-written as:

y (t) = h1e
j2π
(
f1+B

∆t
1

T

)
tC + h2e

j2π
(
f2+B

∆t
2

T

)
tC (5)

In other words, the timing offset is simply absorbed into our fre-

quency offset estimates in Sec. 5. More importantly, the timing

offset between any two transmitters, just like the frequency offset,

remains consistent across symbols over the duration of a packet

(we validate this in Sec. 9.1).

Dealing with Inter-Symbol Interference. While the approach

described above accurately accounts for timing offset within a

symbol, it fails to capture the effect of inter-symbol interference. To

illustrate, consider Fig. 5 where transmissions of two users collide,

each sending different data symbols and each encoded by a chirp. In

this case, it is quite possible that over the duration T of a chirp, one

can observe as many as four distinct symbols colliding as shown.

Failure to account for these collisions would lead to access points

dropping or re-ordering symbols between users.

Our solution to account for inter-symbol interference explicitly

tracks the peaks that result from this interference. Specifically,

a collision of two shifted symbols produces at most four peaks

in the Fourier Transform – two belonging to the first client and

two to the second. Fig. 5 shows such a Fourier transform for two

adjacent time windows, each of length T . One can then extract the

locations of these peaks to obtain four distinct data values per time

window. However, given that two symbols participate in both the

first and second collision, the two collisions are guaranteed to share

two common data values (see Fig. 5). Indeed, any pair of adjacent

collisions will share at least two common data values. By ensuring

that any such common values are reported only once (for e.g., the

first time they appear), one can eliminate half of the observed peaks.

This enables the data from all transmitters to be correctly reported

in-sequence, despite inter-symbol interference.
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Figure 5: Inter-Symbol Interference: Spectrogram of two collided chirps,
and the corresponding Fourier transform peaks.

6.2 Mapping Symbols to Users within a Packet
In this section, we use both time and frequency offsets to map which

symbols (i.e., chirps) correspond to which user within a packet

(See Sec. 5.2) along with one other metric – wireless channels.

Like hardware offsets, wireless channels are expected to remain

consistent for a given client over a packet and vary between clients.

For instance, in Fig. 5, we observe that peaks of the same user over

two symbols are not only identical in frequency offset, but also in

relative height. This means that channel magnitude and phase, after

correcting for any phase offsets between symbols introduced by

frequency offsets, serves as a feature to identify users. This allows

us to build a semi-supervised clustering model (we use the HMRF-

based approach in [10]) using the fractional part of peak location,

channel magnitude, and phase. We give the clustering algorithm

known prior relationships, e.g. multiple peaks in the same symbol

map to distinct users. We then run the clustering algorithm to

recover the sequence of bits corresponding to each user.

7 EXPLOITING CORRELATED
TRANSMISSIONS

So far, we have explained our approach to disentangle and decode

colliding transmissions from clients who are all within communi-

cation range of the base station. We now argue how this approach

also provides a unique opportunity to retrieve data from clients

beyond communication range. The data transmitted by an LP-WAN

sensor can not be decoded by the base station if the received SINR

falls below a particular threshold. Indeed, a message modulated by

CSS can be recovered even if it is deeply buried in noise, but there

is a particular minimum SINR below which a transmitted message

will not even be detected by the base station.

Although one would expect that all LP-WAN sensors were ini-

tially deployed in the vicinity of an LP-WAN base station (and thus

should always be reachable), their transmissions may not reach the

base station because of the randomness of the wireless channel,

interference with other technologies sharing the same bandwidth,

or a change in the surrounding urban environment itself.

While individual sensors may be beyond communication range,

collisions of teams of such sensors can be detected by base stations.

One can then decode these collisions to recover bits transmitted by

these sensors that overlap. Indeed, given that sensors geographically

close to one another are likely to have several overlapping bits, one

can use this information to obtain a coarse view of sensor data in a

given geographical region.

- Test Locations
- Base Locations

3.4 km

3.
2 

km

- Sensors

95
 m

40 m

(a)   (b)

Figure 6: Testbed: (a) Sensor testbed spans four floors of a large university
building; floor plan of one such floor is shown with sensor locations marked
by dots. (b) Anonymizedmap of the neighborhood surrounding CMU campus
with testbed spanning 10 square kilometers.

The rest of this section addresses various challenges in achiev-

ing such a design. First, how do we ensure that teams of sensors

transmit packets that are synchronized in time? Second, how do

we detect and decode their collisions, despite the fact that individ-

ual sensors are beyond communication range? Finally, how do we

choose which sensors transmit concurrently?

7.1 Coordinating Transmissions from Sensor
Teams

Consider a team of sensors that are individually beyond commu-

nication range but would like to transmit identical data packets.

Indeed, gathering a large team of sensors would cause the overall

received power to add up, increasing signal power. However, to do

so one would have to ensure that the transmissions are synchro-

nized in time so that identical symbols across transmitters add up

to reinforce received power.

Time Synchronization. We rely on the fact that Choir is immune

to timing offset. Specifically, we first make the base station transmit

a beacon packet that solicits a response from all sensors in a given

geographic boundary. Given that the base station affords a much

higher transmit power (and superior antennas) as compared to the

client, its signal will be received by all these sensors, even if their

signals are individually too weak to reach the base station. The

sensors then respond concurrently with packets in the next time slot

(i.e. after a fixed pre-agreed duration of time). However, in practice,

such synchronization is never perfect and packets between different

sensors will continue to have a small timing offset. Fortunately,

given the relatively long symbol durations of LP-WAN (∼ 10 ms),

this timing offset is smaller than one symbol (see Sec. 9.1-9.3). As

described in Sec. 6, such timing offsets can be interpreted as a

corresponding frequency offset between the different transmitters.

Recall that Choir exploits such frequency offsets to obtain distinct

peaks corresponding to each client in any collision (as in Fig. 3).

As a result, the coarse time-synchronization provided by the base

station’s beacon packet is sufficient to observe such peaks, at least

for sensors above the noise-floor at the base station.

Whom do we coordinate? Now that we have a mechanism to co-

ordinate sensors, how dowe decide whom to coordinate or schedule

at any given time. In practice, making this decision is a function of

the spatial distribution of sensor data, which can vary between dif-

ferent kinds of sensors and different environments. Given that sen-

sors are often deployed statically in buildings over long durations,
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one can learn the extent of these correlations over time. Indeed,

such a scheduling algorithm can estimate the signal-to-noise ratio

of clients to schedule larger groups of sensors for transmitters that

are further away. In effect, this leads to a system whose resolution

of measured sensor data increases for sensors that are geographi-

cally closer to the base station. Our results in Sec. 9 measures the

correlation of data from various subsets of temperature sensors

deployed across multiple buildings in CMU campus.

7.2 Decoding Beyond Communication Range
Now that we have synchronized collisions from a desired group of

clients, we next detect and decode their data.

Detecting Packets. A key challenge however is that for trans-

mitters far away from the base station, all peaks may be buried

below the noise-floor. Indeed, this makes detecting collided packets

from teams of weak client transmitters particularly challenging.

Our solution to overcome this problem relies on the multiplicity of

clients that collide as well as preamble symbols. In particular, we

coherently add the power of the Fourier representation, given by

Eqn. 1 over sliding windows of n symbols, where n is the size of the

preamble. Despite the fact that peaks in any one symbol are below

the noise, they are unlikely to be buried in noise when averaged

over a large number of symbols. This allows us to both detect the

packet as well as obtain coarse estimates of frequency offsets as

required by Algm 1.

Decoding Algorithm. While averaging over symbols is useful to

detect the energy of the preamble, one cannot do so for the data

given that each data symbol carries a unique sequence of bits. There-

fore, our solution to decode data relies on a maximum-likelihood

approach that exploits the knowledge of frequency offsets. Specifi-

cally, we reconstruct different possible collisions of the transmitters

given their channels and frequency offsets (from Algm. 1) for each

possible sequence of data bits in a symbol. We then obtain the data

bits by identifying the collision that best fits the observed data sym-

bol. Mathematically, for any received signal y, channels hi , timing

offsets ti and frequency offsets fi for each client i, we obtain the

data symbol d as

d = arg min

d
| |y −

∑
i
hiej2π (fi+B

∆ti
T +d)tC | |2 (6)

where C is the known preamble chirp that spans a bandwidth B
over time T , as before. Given that the above equation models and

exploits the presence of multiple clients in the collision, it provides

a robust method to decode data despite each individual client’s

signal being below noise.

Dealing with Collisions. Despite scheduling certain teams of

transmitters with a beacon from the base station, it is possible that

such transmissions will experience collisions with other sensors

closer to the base station. Our approach to deal with such unwar-

ranted collisions is very similar to Choir’s solution for the near-far

effect in Sec. 5.2. In particular, we first measure and subtract peaks

above the noise from the received signal until repeatedly using

Algm. 1 until no clear peaks are visible. Finally, we apply the de-

tection and decoding steps described above to extract scheduled

transmissions from clients that are below the noise floor.

A few points are worth noting: (1) Like any other protocol, Choir

may be unable to recover collisions owing to excessive interference

or noise leading to some packets unacknowledged. In this scenario,

Choir relies on LoRaWAN’s underlying MAC protocol (ALOHA or

TDMA) to identify such loses (e.g. using acknowledgments) and

re-transmit. (2) To achieve gains, Choir requires that overlapping

chunks of bits of sensor data lead to overlapping chunks of sig-

nals that then add up in power. However, interleaving and coding

schemes may cause even data different by one bit to have few coded

bits in common. Our solution to resolve this is to splice sensed data

into smaller packets that carry different chunks of consecutive

sensed bits so that those with most significant bits remain identical,

even after coding.

8 IMPLEMENTATION
We implement Choir on a testbed of software radio base stations

and clients built using commodity components and the LoRaWAN

chip. Our base stations are composed of USRP N210 software radios

and the WBX daughterboards operating at the 900 MHz bands
5
. We

use the UHD+GnuRadio library and develop our own LoRaWAN

decoder and Choir’s algorithms in C++ and MATLAB to process

signals. Unless specified otherwise, our base station uses a single

S469AM-915 antenna and a ZX60-0916LN+ low noise amplifier. We

mounted the base station on the top floors of three tall buildings

on CMU campus. Our experiments using MU-MIMO deploy with

up to 3 base-station antennas synchronized by a Jacksonlab Fury

clock.

The clients are SX1276MB1LAS boards with an embedded Lo-

RaWAN chip that is mBed compatible. We connect these boards

with NUCLEO-L152RE boards with the mBed platform to program

the LoRaWAN chips to transmit sensor data at regular time peri-

ods. The boards operate at a center frequency of 902 MHz over a

bandwidth of 500 KHz or 125 KHz depending on the data rate the

wireless channel supports [5]. We consider three different types

of data: (1) Random sequence of bits per packet that are transmit-

ted periodically at regular intervals (500 ms). (2) A specific known

sequence of bytes at the same period. (3) Sensor data from tem-

perature and humidity sensors placed across different buildings in

the university campus, as they are observed. We leverage an open

environmental sensor board platform with an Atmel Atmega32L

microcontroller and on-board BME280 temperature and humidity

sensors.

Evaluation: We evaluate our system in a neighborhood of CMU

campus. The campus contains and is surrounded by several multi-

storey buildings, trees and hilly terrain. We make up to 30 client

nodes simultaneously transmit from as many as 100 locations across

four floors of five different buildings in different parts of the campus

as well as in buildings, roads and pedestrian walkways outside

campus over an area spanning 10 square kilometers around the

campus. Fig. 6 plots the scale of our testbed area with the actual

roads and building shapes omitted due to anonymity. We note that

we consider concurrent transmissions from multiple distributed

client nodes to a single base station at any time.

Baseline: We compare our system with two baselines: (1)

LoRaWAN: A standard LoRaWAN baseline that uses slotted

5
Note that dedicated LoRa base stations can support better ADCs than the USRP given

that the base station can afford to be more expensive and power hungry.
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Figure 7: Characterizing Hardware Offsets: (a)-(b) Measures the CDF of the time plus frequency offset and only the frequency offset as observed across 30
LoRaWAN LP-WAN nodes. (c)-(d) Measures the average and standard deviation of the root mean-squared error of the relative timing offset and the frequency
offset plus timing offset within a packet.

ALOHA coupled with exponential backoff to retransmit; (2) Lo-

RaWAN+Oracle: LoRaWAN with an oracle scheduler that explicitly

schedules transmissions optimally to avoid collisions; (3) Choir: Our

System which decouples collisions using hardware offsets. When

deployingmulti antenna stations (Sec. 9.5), we additionally compare

our system with the state-of-the-art uplink MU-MIMO [40].

9 RESULTS
9.1 Characterizing Hardware Offsets
In this experiment, we characterize the distribution of observed

frequency and timing offsets measured across different LoRaWAN

hardware. We do this to characterize the diversity of these offsets

with real hardware, which is crucial to separate different users. We

further evaluate how stable they remain across symbols over the

duration of a packet.

Method: We consider a testbed with two single-antenna LP-WAN

radio which transmit a known sequence of bits concurrently. We

synchronize transmissions using beacon packets as described in

Sec. 6.We receive collisions from these transmitters on a USRP N210

software radio emulating a single-antenna LP-WAN base station.

We repeat this experiment across multiple packets and measure the

timing and frequency offset on a per-symbol basis as described in

Sec. 5 and 6. We further perform this experiment for different pairs

of LoRaWAN radios across 30 LP-WAN radios.

Results: Fig. 7(a) and (b) plot the cumulative distribution of time

plus frequency offset, and only the frequency offset, respectively, as

measured across 30 nodes. We specifically focus on the fractional

component of frequency offset and sub-symbol timing offsets, given

that these are the quantities that help us separate transmissions

of users. We note that observed sub-symbol timing offsets and

frequency offsets in the wild across nodes are equally likely to span

the entire range of possible values. The diversity of these hardware

offsets makes them suitable vehicles to track and separate users.

Next, we evaluate the stability of these values across symbols

and our ability to measure them accurately. We plot the average and

standard deviation of the root mean-squared percentage error of

the relative timing offset and the frequency offset plus timing offset

within a packet in fig. 7(c) and (d) across a range of SNR values. As

a percentage relative to the duration of symbol and bandwidth of a

subcarrier, respectively, we observe the mean error of these offsets

to be just 1.84 % and .04 % respectively, attesting the stability of

these values and Choir’s ability to track them accurately.

9.2 Disentangling Collisions
In this experiment, we present our results from disentangling colli-

sions from simultaneous transmissions by a large number of LP-

WAN nodes.

Method: We consider a testbed, initially with two single-antenna

LP-WAN radios which each transmit a randomly chosen sequence

of bits concurrently. We receive collisions from these transmitters

on a USRP N210 software radios emulating a single-antenna LP-

WAN base station. We repeat this experiment across a range of

locations of the two LP-WAN nodes where both nodes experience

different levels of signal-to-noise ratio (SNR). We then progressively

add nodes until the network has as many as 10 nodes transmitting

concurrently at any time. We measure three metrics: (1) network

throughput of all nodes; (2) latency measured between a beacon

packet from the base station and the response packet from a client;

(3) total number of transmissions and re-transmissions required to

send one packet worth of data – a useful metric to measure energy

efficiency, as that packet transmission is a major drain on battery

for sensors [3].

Results: Fig. 8(a)-(c) Measures the throughput, latency and num-

ber of transmissions for Choir and the LoRaWAN baseline for two

radios across different SNR regimes – low (<5 dB), medium (5-

20 dB) and high (>20 dB). Nodes transmit at the fastest data rate

that can be supported by the SNR. We observe that Choir experi-

ences a 2.58×(2.113×) gain in throughput vs. LoRaWAN(+Oracle),

3.9×(1.5×) reduction in latency and 3.0549×(6) × reduction in num-

ber of transmissions required to send a useful packet of data over

standard LoRaWAN. Indeed, Choir’s performance remains consis-

tent across SNR regimes. Fig. 8(d)-(f) measures the throughput,

latency and number of transmissions for Choir and the LoRaWAN

baseline as the number of concurrent users colliding progressively

increases. Our system’s performance increases progressively as

the number of users increases, given the opportunities to decode

multiple users simultaneously, with 29.02×(6.84×) gain in through-

put vs. LoRaWAN(+Oracle), and 19.37×(4.88×), 4.54× reduction in

latency and retransmissions respectively for 10 simultaneous users.

We observe that the scaling, while impressive is not unbounded.

This is because at such a large number of concurrent users, the

near-far effect coupled with collisions in hardware offsets become

increasingly likely to limit system performance.

6
Oracle has perfect performance in # transmissions
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Figure 8: Disentangling Collisions: Consider concurrent transmissions from several LP-WAN nodes across a wide range of SNRs decoded at a single-antenna
LP-WAN base station. (a)-(c) Measures the throughput, latency and number of transmissions for Choir and the LoRaWAN baseline across low (<5 dB), medium
(5-20 dB) and high (>20 dB) SNRs. (d)-(f) Measures the throughput, latency and number of transmissions for Choir and the LoRaWAN baseline across number of
users.

9.3 Extending Range of LP-WANs
In this experiment, we evaluate the promise of Choir in extending

the range of low-power networks in urban settings.

Method: We consider two or more nodes in our testbed physi-

cally separated by the USRP base station by a given distance and

transmitting identical data. In particular, we focus on locations of

nodes from which signals cannot reach the base station, even at the

minimum data rate of LoRaWAN. We then progressively increase

the number of sensors situated at randomly chosen positions in

the testbed that collide at any time. We group the observed data

based on the minimum distance between the nodes that collide and

the base station. We measure two quantities: (1) the throughput

achieved by teams of these sensors in transmitting the desired data

sequence, as the number of sensors broadcasting identical data

increase across a range of distances (and SNR) between the base

station and clients; (2) the maximum distance of the closest trans-

mitter whose collisions were decodable when it collaborates using

Choir with different number of other transmitters to reach the base

station.

Results: Fig. 9(a) measures the throughput of various numbers of

LoRaWAN clients coordinating to transmit a given data sequence

to the base station. We chose these clients so that individually,

their throughput to the base station is zero even at the lowest data

rate. However, collectively their throughput increases substantially

with teams of up to 30 nodes transmitting at data rates as high as

5470 bps. This is because as larger teams of clients collide, their

signals are received at greater power, allowing these clients to

transmit at higher data rates. Next, we study the impact of this on

the range of the LP-WAN network. Fig. 9(b) plots the maximum

of the distance of the closest transmitter to a base station, as it

collaborates with teams of other transmitters to reach the base

station. We observe that while one client in the network could

reach at best a distance of 1 km – a fairly low quantity, in part due

to the tall buildings and hilly topography of CMU campus as well

as hardware limitations of the USRP’s receive chain [35]. Under

identical hardware constraints, teams of colliding 30 clients using

Choir could reach the base station even when the closest of them

was 2.65km away, an improvement of 2.65 ×.

9.4 Exploiting Correlated Sensor Data
In this experiment, we evaluate Choir’s ability to exploit transmis-

sion of sensor data that is spatially correlated

Method: We leverage a testbed of sensor nodes placed in four

different floors of across two large buildings in CMU campus (Fig. 6

plots the sensor locations). Each sensor measures both temperature

and humidity values in the room in which they are placed. We

co-locate 36 LP-WAN radios with these sensors and transmit. These

sensors transmit periodically at a rate of 1 reading per minute. We

then measure the network throughput and resolution of the sensor

data from the base station.

Results: Fig. 11(a) plots the mean percentage error of the observed

sensor data against the true values, for sensors grouped together

using different strategies – randomly, by floor and by relative dis-

tance from the center of the floor. We find that the relative distance

from the center of the floor to be an excellent method to group

together sensors. This stems from the fact that the farther away

these sensors are from the center of the building, the closer they

are to the outside temperature (or humidity). Next, we evaluate the

end-to-end performance of our system compared to the LoRaWAN

baselines. Specifically, our system schedules transmissions from

groups of sensors that are beyond the range of the LP-WAN base

station, while allowing nearby sensor nodes to transmit data as
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Figure 9: Extending LP-WAN Range: Consider concurrent identical transmissions from several LP-

WAN nodes to a single-antenna LP-WAN base station. (a) Measures throughput gain of Choir over the
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they collect them. We then apply Choir’s algorithms described in

Sec. 7.2 to decode potential collisions as well as to exploit corre-

lation in sensor data to recover overlapping bits from groups of

sensors that are beyond base station’s range. Fig. 11(b) measures

the network throughput of observed sensor data for Choir and the

baseline systems. We note that our system has a gain of 29.3377×

over LoRaWAN+ALOHA and 5.609× over the LoRaWAN+Oracle

baseline. Finally, one may wonder how the resolution of observed

sensor data from sensors beyond communication range varies with

their distance to base station. Fig. 10 plots the mean percentage er-

ror of the recovered sensor data across an increasingly large group

of sensors as we vary their distance to the base station (relative

to the closest sensor). As expected, we observe a gradual decrease

in resolution with distance, with an error of 13.2% for teams of up

to 30 sensors at a distance of at least 2.5km from the base station.

We note that despite the loss in resolution, Choir is far superior to

the baseline systems, where all of these nodes would be beyond

communication range of the base station.

9.5 Effect of Multiple Antennas
We evaluate the performance of Choir relative to MU-MIMO for

a base station with 3-antennas. Fig. 12 plots the network through-

put of a team of 5 sensors transmitting data to the base station

using: (1) Only one receiver antenna and LoRaWAN+ALOHA; (2)

Only one receiver antenna and LoRaWAN+Oracle; (3) All three

antennas and uplink MU-MIMO; (4) Choir using only one receiver

antenna; (5) Choir run on all three antennas and averaging results.

We observe that while MU-MIMO’s gain over standard LoRaWAN

is capped at 9.994 ×(3.04 ×) vs. LoRaWAN(+Oracle), Choir, with

even a single antenna is at 11.07 ×(3.37 ×). Further, the presence of

multiple antennas can be used to further improve Choir’s gain to

13.8489 ×(4.217 ×), demonstrating that its gains are complementary

to MU-MIMO.

10 CONCLUSION
This paper presents Choir, a system that improves throughput and

range of low-power wide area networks in urban environments.

Choir proposes a novel approach that exploits the natural hardware

offsets between low-power nodes to disentangle collisions from

several LP-WAN transmitters using a single-antenna LP-WAN base

station. Further, Choir allows teams of LP-WAN sensor nodes with

correlated data to reach the base station, despite being individually

beyond communication range. Our system is implemented and

deployed on a large outdoor testbed spanning 10 km
2
around CMU

campus.
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