COS 563: Wireless Networks (G)

Lecture 1: Class Introduction Kyle Jamieson

Slides credit: Adapted from Haitham Hassanieh

Wireless Networks Are Every Where

Cellular Networks

Wireless Data Centers

Wireless Wearables

Wireless Sensors

Ur 99

Deep Brain Neurostimulator

Gastric Stimulator

Foot Drop Implants

UAVs

Cochlear Implants

Cardiac Defibrillators/ Pacemakers

Insulin Pumps

Wireless VR

Wireless Vehicles

Increasing Demand for Wireless Connectivity

Increasing Demand for Wireless Connectivity

Connecting People

Increasing Demand for Wireless Connectivity

Increasing Demand for Wireless Connectivity

Connecting + Sensing Everything

7 © 2020 Nokia

NOKIA Bell Labs

Cross Layer Wireless

Emerging Areas

- Self-driving Cars
- Medical Micro-Implants
- Robotics & Drones
- Underwater Networks
- Noise Cancellation

Wireless Sensing

Course Information

• Staff

- Instructors: Kyle Jamieson, Yaxiong Xie
- Office hours: Tuesday after class
- Material
 - Mainly research papers
 - Lecture Slides
 - Perusal for discussions & questions
- Recommended Prerequisites
 - Any undergraduate networking, wireless, or digital communications class
 - Basic math and signal processing: probability, Fourier, ...
 - Programming maturity (important for the project)

Class Participation

- Papers will be discussed in a very involved manner. All students are expected to have thoroughly read and considered each assigned paper, and to be prepared to pose and answer questions about each reading.
- Preparing for class. Please prepare at least five comments or questions for each paper and post those comments or questions on <u>Perusall</u>
- Class participation grade will be determined based on attendance and, most importantly, your concrete contributions to the paper discussion both on Perusall and in class

Term Project

- Open-ended systems research project
 - topics reached after discussion with the class instructor
 - Projects should be done in groups of one or two
 - All software code/firmware, hardware designs, etc shared privately with instructor
- All group students expected to share equally in implementation
 - At end of semester, each student working in a group asked to describe contributions of teammate

Grading

- Class participation: 30%
- Precept lead: 20%
 - Organize discussion, may answer questions
 - Submit a 500-1000-word report that summarizes both discussion and paper
- Project: 50%, comprised of:
 - Checkpoint #1 project proposal 10%
 - Checkpoint #2 preliminary demo 10%
 - Checkpoint #3 project presentation 10%
 - Checkpoint #4 final report (5 pages + biblio) 20%

Class Webpage

www.cs.princeton.edu/courses/archive/spring21/cos563

COS 563 Wireless Networks (Spring 2021)

Overview

COS-563 is a graduate-level class that explores recent developments in wireless networks and sensing systems. Topics include an overview of general wireless network architecture, including the abstraction of underlying and overlying hardware and layers in the networking stack, integration with overlying applications, and concurrency, performance, and resource allocation in wireless networks. Further topics include millimeter-wave communication, multi-hop networks, underwater and water-air communications, low power backscatter and long range networks, Wi-Fi based localization, and wireless radar and sensing.

The course will include two precept based discussion meetings per week, in which students will read and discuss papers on the foregoing topics, and a semester-long project.

Class Participation

Papers will be discussed in a very involved manner. All students are expected to have thoroughly read and considered each assigned paper, and to be prepared to pose and answer questions about each reading.

Preparing for class. Please prepare at least five comments or questions for each paper and post those comments or questions on <u>Perusal</u> one day prior to class. General instructions on how to read and review a paper can be found <u>here</u>.

Your class participation grade will be determined based on attendance and, most importantly, your concrete contributions to the paper discussion both on Perusall and in class.

During the paper discussion in class, we will divide the students into groups and select one student in each group as the paper discussion leader (leaders will be selected in a round-robin manner). The leader should organize the discussion and may answer questions from the group members. The leader is also required to submit a 500 to 1000-word report that summarizes both the discussion and the paper. The deadline for report submission is 48 hours after the class.

Note: Class attendance is required. With that being said, we understand that students sometimes can be in unexpected situations. Do let the instructors know if you have to miss a class, and we can make arrangements to accommodate the absence.

COS 563 Wireless Networks: Syllabus

Home Syllabus Reading List Announcements Canvas Perusall

Textbooks

The following optional texts are for your reference:

- Wireless Communication Networks and Systems, by Cory Beard and William Stallings (ISBN: 0133594173, available online).
- · Fundamentals of Wireless Communication [T & V], by David Tse and Pramod Viswanath (available online).
- · Computer Networks: A Systems Approach, third edition, by Larry Peterson and Bruce Davie.

Schedule

Also available as an ical file that you can subscribe to. This schedule is preliminary and subject to change.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Date	Topics	Readings	Notes
Tue 02/02	Class Introduction; How to Read a Paper	Pre-Reading: HowToRead	
Part 1: Wireless from the Transport Layer Downwards			
Thu 02/04	Stochastic Forecasts for Wireless Cellular Networks	Pre-Reading: Sprout	
Tue 02/09	Transport Protocol Design using Machine Learning	Pre-Reading: Remy	
Thu 02/11	Introduction to 5G Cellular Networks	Pre-Reading: 5G overview	Student lead: AKS
Tue 02/16	Understanding Operational 5G Networks	Pre-Reading: 5GMeasure	
Thu 02/18	Fine-grained PHY-layer Information for Congestion Control	Pre-Reading: PBECC	
Part 2: Multi-hop and Mesh Wireless Networks			
Tue 02/23	Packet Radio Medium Access Control	Pre-Reading: Maca	
Thu 02/25	Medium Access in Wireless Local Area Networks	Pre-Reading: Macaw	
Mon 03/01			Project team must be formed by 1 March.
Tue 03/02	Mesh Networking	Pre-Reading: Roofnet05	
Part 3: Bit Rate Adaptation and Rateless Codes			
Thu 03/04	Bit Rate Aadaptation in 802.11	Pre-Reading RRAA	
Tue 03/09	Rateless Codes	Pre-Reading: Spinal	
Part 4: New Physical Media			
Thu 03/04	Communication via Physical Vibrations	Pre-Reading: Ripple2	
Tue 03/09	Visible Light Communication	Pre-Reading: DarkLight	
Thu 03/11			No class
Tue 03/16			Spring recess week
Wed 03/17			Project proposal due.
	11.1 . 0 . 1.4		

Sample Topics in this Class

- Network Coding
- Cross Layer Networking
- 5G Millimeter Wave
- Full Duplex
- Programmable surfaces

- Localization: Smart homes
- Human Sensing & Imaging
- Self Driving Cars
- Medical Implants
- Food Sensing

Introduction to Wireless Networks

Wireless networks provide advantages

- Mobility
- Eliminates piles of wires at home and office

But wireless networks present different challenges

- Medium is shared \rightarrow Interference
- Medium is shared \rightarrow Throughput \searrow as Devices \nearrow
- Channel can bad & unstable → Losses + Dead Spots

Traditional Design of Wireless Networks

Traditional design of wireless networks mimics wired networks

- Assumes links are point-to-point
 - But wireless links have a broadcast nature

Why point-to-point is a suboptimal abstraction for wireless links?

<u>Scenario</u>: Alice and Bob want to exchange two packets; their radio range doesn't allow them to reach each other \rightarrow they need a router to relay the packets between them.

Router

<u>Scenario</u>: Alice and Bob want to exchange two packets; their radio range doesn't allow them to reach each other \rightarrow they need a router to relay the packets between them.

Traditional Approach

Requires 4 transmissions

• Alice to router; Router to Bob; Bob to router; Router to Alice

But wireless links are *broadcast* not *point-to-point!*

• Can we exploit broadcast to do better?

<u>Scenario</u>: Alice and Bob want to exchange two packets; their radio range doesn't allow them to reach each other \rightarrow they need a router to relay the packets between them.

Approach: Network Coding

Requires 3 transmissions instead of 4

• Alice to router; Bob to router; and router to both Alice and Bob

Harnessing the broadcast nature of wireless via network coding increases throughout

Traditional Approach Optimize within isolated layers

Network & Apps

Comms. and Coding

HW and Radios

Disruptive gains are unlikely

Why is layer separation suboptimal in wireless networks?

Scenario: Laptop in a Dead Spot

With Layer Separation a few bit errors -> persistent loss

But access points are unlikely to have same bit

01×101011011

Loss

error

Scenario: Laptop in a Dead Spot

Solution: Cross-Layer Approach

- Allow the layers to collaborate instead of acting separately
- PHY layer delivers partially correct packets
- Network layer combines correct bits across different access points to obtain correct packet

Which access point should we believe?

Solution: Network cooperates with physical layer

- Physical layer already estimates a confidence in its 0-1 decision
- If we expose this information to the network layer, we can compare bits in packets received at different APs

Assign to each bit the value that corresponds to a higher confidence

Experiment: Packet Delivery vs. Poor Coverage

Fraction of Packets Delivered

High Data Rate Applications

5G Wireless Backhaul & Access

Virtual Reality

Connected Vehicles

Robotic Networks

Wireless Data Centers

VR requires a cable connection to a PC

Significantly limits mobility & experience

Millimeter Wave Technology

Huge bandwidth available at millimeter wave frequencies

Millimeter Wave can support data rates of multi-Gbps

Millimeter Waves Suffer from Attenuation

mmWave radios use phased antenna arrays to focus the power along one direction

Nokia & National UCSD

okia & National UCSD Instruments 256 elements

SD ments

UCSD 64 elements

Bell Labs 384 elements

Anokiwave 256 elements

64 elements

Fujitsu 64 elements

Small Wavelength enables thousands of antennas to be packed into small space \rightarrow Extremely narrow beams

Today's Networks : Broadcast

mmWave changes how wireless systems operate mmWave: Narrow-beam Antennas

Need to quickly find the right beam alignment and track the user.

Suffers in case of:

- Mobility
- Blockage
- Multi-users

mmWave changes how wireless systems operate mmWave: Narrow-beam Antennas

mmWave changes how wireless systems operate

mmWave: Narrow-beam Antennas

Today's Radios Are Half Duplex

Self Interference is hundred billion times 110dB+ stronger than the received signal!

But we know the signal which we are transmitting! \rightarrow Cancel the self-interference on the hardware \rightarrow 1.97x increase in throughput

Full Duplex Radios: Major change in communication protocols

Today: Wireless Communication Adapt to Channel Conditions

- Wireless Channel changes quickly and is unpredictable.
- If Channel is Bad
 → Reduce data Rate, more coding
- If Channel is Good

 \rightarrow Increase data rate, less coding

Today: Wireless Communication Adapt to Channel Conditions

New Approach: Programmable Radio Surfaces Change the wireless channel itself

How to Read a Paper

S. Keshav

Next class meeting: Sprout