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Food: 

Advances in the field of sensor devices to monitor the quality of food has grown 

extensively over the last few decades. Existing food and liquid sensing techniques are either too 

costly and bulky, such as spectroscopes, or are invasive and inaccurate, such as RF-based sensing. 

Conventional RFIDs are not extendable to different environments, as the RFID signal is highly 

sensitive to near and far-field coupling, which depends on content and the surrounding 

environment. The RFID reader is usually calibrated to perform under different environments and 

with different content. RF-EATS senses food and liquids non-invasively and requires no 

calibration. The design is compatible with existing RFID tags. The reader relies on a novel learning 

framework that makes sensing generalizable to unseen environments with an average accuracy of 

90% across different samples and environments. However, the design is incapable of resolving 

small dielectric differences between the content materials. 

Design: 

 At its core, RF-EATS employs a neural learning model that learns the RF features due to 

the sample regardless of the environmental changes. However, the neural learning models require 

very large datasets, which is costly and time consuming, while still not being fully capable of 

generalizing to unseen environments. Thus, RF EAT readers use variational auto encoder (VAE) 

to produce a large number of realistic synthetic data from a small number of real-world 

measurements.  

  The VAE uses a multi-path kernel function that dissects the measured wireless channel to 

content and environment-dependent features. This classification is important to train the generative 

model. The environment-dependent features capture practical radio environments. The VAE uses 

latent variables to cover a broad-spectrum of possible environmental setups. Since the VAE is 

trained to minimize reconstruction loss, if the inputs to the VAE encode environment-dependent 

features and the reconstruction loss goes up, anomalies in the contents can be detected. 

Once a well-trained model is generated, the real synthetic data output from the VAE is fed 

to a feature encoder that generates features for use in classification. The feature encoder consists 

of common and task-specific layers. The output features are fed to the Classifier to yield the 

classification results. Propagation-related features can be re-used across different environments, 

and hence generalize to unseen environments. However, retraining needs to be done for different 

tasks (i.e. different content sensing).  

 

Implementation and Evaluation: 

 The design is implemented on USRP X310 and N210 software radios. The radios use EPC-

Gen2 protocol and transmit high power frequency to power up the device, and a low power sensing 

frequency within 500-1000 MHz. At the receiver, a low pass filter is used to attenuate the 

interference from the power up signal, and an LNA is used to boost the sensing signal. The 

processing is done offline using MATLAB and python software. The receiver performs standard 

channel estimation using the packet preamble. The transfer learning classifier uses Adam optimizer 

with learning rate=1e-4, beta1 = 0.9, beta2 = 0.999, dropout rate = 0.2. The VAE encoder and 

decoder consist of 3 hidden layers each. The dimension of latent variable was set to 16. The Adam 

optimizer was set up with learning rate=1e-7, beta1 = 0.9, beta2 = 0.999, dropout rate = 0.2. Off-

the-shelf passive UHF RFIDs, particularly the Alien ALN-9640 Squiggle and Smartrac tags were 

used. 
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 RF-EATS was tested in 7 different applications with 2,048 samples in total and in 20 

different environments but all in practical real-life scenarios. The RFID reader was placed within 

10-20 cm distance at ± 45 degrees orientation. When trained and tested in the same environment, 

RF-EATS achieves an accuracy greater than 90% for different applications. The minimum 

accuracy drops to 83% when testing is done in new unseen environments, with a median 

improvement of 15.1% over simple neural networks, 26.5% over RFIQ and 29% over ray-tracing 

model over all applications. However, the performance of RF-EATS depends heavily on the 

dielectric differences between contents of interest. The 90% accuracy is achieved when the 

dielectric difference is over 200 and drops to 77% at the lowest difference of 15. 

 

Discussion: 

During the class discussion, students acknowledged the novelty of the neural learning 

concept and credited the authors for following through with a complete prototype implementation. 

The transfer learning model in particular appealed to the class as it significantly made RF-EATS 

a lot more user friendly than existing work by reducing the time needed for training. However, 

several students hoped for a more detailed study of the performance metrics of the machine 

learning model, such as the variations of the latent variables across different experiments and the 

impact of container material and shape as well. Several students also criticized the significant 

dielectric difference between the contents used while conducting the different experiments. The 

accuracy should have been reported for finer differences between the content materials. The 

accuracy enhancement due to increased BW was not quite clear to several students and required 

further elaboration.  

 


