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Propositional Logic
A  SAT solver  solves the  Boolean satisfiability  problem.

Boolean satisfiability is phrased in the language of
propositional logic.  

Propositional symbols  
A ::= A1 | A2 | A3 | …

Expressions  (also called “well-formed formulas”  wff)
α,β ::=   A | ¬ α | α∧β | α∨β | α→β | α↔β | (α)
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Semantics of propositional Logic
Syntax:    Propositional symbols A,      Formulas  α

A ::= A1 | A2 | A3 | …
α,β  ::=   A | ¬α  | α∧β | α∨β | α→β | α↔β | (α)

Semantics:
Truth assignment (or “model”)      σ :   A→Bool
“Evaluate a proposition in a model”

eval(σ, α) : Bool :=
match e with
| Ai ⇒ σ (Ai)     
| ¬α ⇒ negb(eval(σ, α) )
| α∧β⇒ andb(eval(σ, α), eval(σ, β))
| . . . et cetera 
end

“Model satisfies a proposition”      σ ⊨ α when eval(σ, α)=T
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Truth Tables
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eval(σ, α) : Bool :=
match e with
| Ai ⇒ σ (Ai)     
| ¬ α ⇒ negb(eval(σ, α) )
| α∧β ⇒ andb(eval(σ, α), eval(σ, β))
| . . . et cetera 
end

α ¬α
T F
F T

α β α∧β
T T T
T F F
F T F
F F F

α β e1∨β
T T T
T F T
F T T
F F F

α β α→β
T T T
T F F
F T T
F F T



Complex Truth Tables
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A B C (A ∨ (B ∧ ¬C))
T T T T T
T T F T T
T F T T F
T F F T F
F T T F T
F T F F T
F F T F F
F F F F F

Truth tables can also be used to calculate all possible values
of eval(σ, e)= for a given wff :



Complex Truth Tables

7

A B C (A ∨ (B ∧ ¬C))
T T T T T F
T T F T T T
T F T T F F
T F F T F T
F T T F T F
F T F F T T
F F T F F F
F F F F F T

Truth tables can also be used to calculate all possible values
of eval(σ, e)= for a given wff :



Complex Truth Tables
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A B C (A ∨ (B ∧ ¬C))
T T T T T F F
T T F T T T T
T F T T F F F
T F F T F F T
F T T F T F F
F T F F T T T
F F T F F F F
F F F F F F T

Truth tables can also be used to calculate all possible values
of eval(σ, e)= for a given wff :



Complex Truth Tables
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A B C (A ∨ (B ∧ ¬C))
T T T T T T F F
T T F T T T T T
T F T T T F F F
T F F T T F F T
F T T F F T F F
F T F F T T T T
F F T F F F F F
F F F F F F F T

Truth tables can also be used to calculate all possible values
of eval(σ, e)= for a given wff :



Gottlob Frege
1848-1925

1879:   Begriffsschrift, eine der arithmetischen
nachgebildete Formelsprache des reinen Denkens

(Concept-Script: A Formal Language for Pure 
Thought Modeled on that of Arithmetic)

“In effect, Frege invented axiomatic predicate logic, 
in large part thanks to his invention of quantified 
variables, which eventually became ubiquitous in 
mathematics and logic”  -- Wikipedia

Predicate Logic
Predicates and Relations
Universal ∀ and Existential ∃ quantifiers
Truth tables (sort of) and soundness



David Hilbert
1862 - 1943

one of the most influential and universal 
mathematicians of the 19th and early 20th 
centuries. … Hilbert and his students 
contributed significantly to establishing 
rigor and developed important tools used in 
modern mathematical physics. Hilbert is 
known as one of the founders of proof 
theory and mathematical logic, as well as for 
being among the first to distinguish between 
mathematics and metamathematics.



⊨True   versus  ⊢Valid

⊨ truth: a property of statements,
i.e., that they are the case.

⊢ validity: a property of arguments,
i.e., that they have a good structure.
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Definitions ⊨
A truth assignment satisfies a wff σ ⊨ α when eval(σ, α)=T.

A wff is satisfiable if there exists a truth assignment that satisfies it.

Let Σ be a set of wffs. Then Σ tautologically implies α, Σ⊨α,  if every truth 
assignment that satisfies all formulas in Σ also satisfies α.

• If  ⌀⊨ α then we say α is a tautology and we write ⊨α .
• If Σ is unsatisfiable, then Σ⊨α for every α.
• Let α⊨β be shorthand for  {α}⊨β.       If α⊨β and β⊨α then α and α are 

tautologically equivalent.
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Definitions   ⊢
The symbol   ⊢ is not about “truth” or “model satisfies formula”, it is about 
derivability using a set of inference rules.

Let Σ be a set of wffs. Then   Σ ⊢α if and only if there is a derivation in 
(for example) Gentzen’s natural deduction system concluding with that 
sequent.

If  ⌀⊢α then we say α is a valid and we write ⊢α .

Theorem  (soundness):   If ⊢α then ⊨α.
Theorem  (completeness):   If ⊨α then ⊢α.

Propositional logic (e.g., Gentzen’s natural deduction) is sound and complete.   
So α is valid if and only if α is a tautology.
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David Hilbert
1862 - 1943

one of the most influential and universal 
mathematicians of the 19th and early 20th 
centuries. … Hilbert and his students 
contributed significantly to establishing 
rigor and developed important tools used in 
modern mathematical physics. Hilbert is 
known as one of the founders of proof 
theory and mathematical logic, as well as for 
being among the first to distinguish between 
mathematics and metamathematics.

In 1920 he proposed explicitly a research project (in metamathematics, as it 
was then termed) that became known as Hilbert's program. He wanted 
mathematics to be formulated on a solid and complete logical foundation. He 
believed that in principle this could be done, by showing that:
(1) all of mathematics follows from a correctly chosen finite system of axioms; 
and
(2) that some such axiom system is provably consistent



Kurt Gödel
1906 – 1978
(lived 1934-1978 in Princeton, NJ)

Proved (1931) that

(1)no finite axiomatization can prove all 
true statements

(2)cannot prove consistency of a system 
in the system itself

Dang!



Kurt Gödel
1906 – 1978

More specifically, he proved:

Any deductive system sufficiently powerful to 
have,
• propositional connectives (∧,∨,¬)
• quantifiers over the natural numbers (Ɐ,∃)
• addition and multiplication (+,×)
cannot be both sound and complete.

We generally choose soundness: if you can prove it, then it’s true.

But fortunately, propositional calculus is so weak that it can be (and is)
both sound and complete.



David Hilbert
1862 - 1943

Well, if we can’t have an algorithm 
for deciding what’s true, 

maybe we can at least,
• formalize what is an 

“algorithm”,  and

• Have an algorithm for deciding 
what’s provable.



Alan Turing
1912 - 1954

Good news!  (1936)

I can formalize an “algorithm”

Double
Dang!

Bad news!  

No algorithm can decide which statements
are provable (in first-order logic)



Examples
• (A∨B)∧(¬A ∨¬B)  is  satisfiable but not valid
• (A∨B)∧(¬A ∨¬B) ∧(A↔B)  is unsatisfiable
• A, A→B ⊨ B
• A, ¬A ⊨ A∧¬A
• ¬(A∧B)  is tautologically equivalent  to ¬A ∨¬B

Suppose you had an algorithm SAT that would take a wff α as 
input, and return True if α is satisfiable and False otherwise.

How would you use this algorithm to verify each of the claims 
made above?
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(A ∧(A→B)) ∧ ¬B

(A ∧¬A) ∧ ¬(A∧¬A)

¬(¬(A∧B) ↔ (¬A ∨¬B))



Some tautologies
Associative and commutative laws for ∧,∨,↔
e.g.,    A ∧(B∧C) ↔ (A∧B)∧C A∧B ↔ B∧A  

Distributive laws
A ∧ (B ∨ C) ↔ (A ∧ B) ∨ (A ∧ C) 
A ∨ (B ∧ C) ↔ (A ∨ B) ∧ (A ∨ C) 

De Morgan’s laws
¬(A ∧ B) ↔  (¬A ∨ ¬B) 
¬(A ∨ B) ↔  (¬A ∧ ¬B) 

Implication (A→B) ↔  (¬A ∨ B) 
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The intractability of SAT

What we knew in the 20th century



Determining satisfiability using truth tables
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A B C A  ∧ ((B ∨ ￢A)   ∧  (C ∨ ￢B))

F  F F F T  T T T T

F  F T    F T  T T T T

F  T  F    F T  T F   F F

F  T  T F T  T T T F

F  F F F F F F T  T

F  F T    F F F F T  T

F  T  F    F T  F  F F  F

F  T  T T T F  T   T F

A ∧ ((B ∨ ￢A) ∧ (C ∨ ￢B))
Example



Determining satisfiability using truth tables

What is the complexity of this algorithm?
2n where n is the number of propositional symbols

Can we do better?
SAT was the first problem to be shown NP-complete; 
all of the problems in the class NP can be solved by 
reducing them (in polynomial time) to SAT.

So, if we could build a fast solver for SAT, it could be 
used to solve lots of other problems.
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Stephen Cook
1939 –

U. of Toronto 1970—
Turing Award 1982 

Proved (1971) that

It is NP-complete to decide whether a boolean
formula is satisfiable

(also, invented NP-completeness)

Trivia factoids:

• In 1970, the Berkeley Math department denied him tenure.

• Stephen Cook was Professor Mark Braverman’s PhD adviser (2008)

Dang!



P = NP
• No algorithm is known for SAT  (or any 

other NP-complete problem) that is 
polynomial-time in the worst case.

26
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Garey and Johnson 1979
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SAT in the 20th century

By 1979, it was well understood 
by computer scientists    that:

• You prove problem 𝑋𝑋 is NP-complete by 
reducing SAT to 𝑋𝑋

• If you reduce 𝑋𝑋to SAT then obviously you 
don’t know what you’re doing
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A conversation in 1981
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Andrew:   Hey, Philip, what are you working on?
Philip:  My University of Illinois master’s thesis in Computer Science

Andrew:  What’s it about?
Philip:  An analyzer to test whether a concurrent program can deadlock

Andrew:  Cool, how’s it work?
Philip:  I’ll just reduce the Petri Net to “testing the equivalence of Boolean formulas”

Andrew:  That’ll never work!  Don’t you know about the theory of NP completeness?

Philip:  No problem, I already got into Yale Medical School . . .

Philip was 30 
years ahead 

of his time . . .



SAT in the 21st century

. . . is very different!
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Princeton Undergrads PhD students Professor



CNF
Most algorithms for SAT first convert the 
formula into conjunctive normal form (CNF).
• A literal is a propositional variable or its negation
• A clause is a disjunction of literals
• A formula is in CNF if it is a conjunction of clauses
• A propositional symbol occurs positively if it 

occurs unnegated in a clause
• A propositional symbol occurs negatively if it 

occurs negated in a clause
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CNF
Examples
• Literals:  P𝑖𝑖, ￢ P𝑖𝑖

• Clauses: (P1 ∨ ￢P3 ∨ P5), (P2 ∨ ￢P2)

• CNF: (P1 ∨ ￢P3) ∧ (￢P2 ∨ P3 ∨ P5)
• P1 occurs positively and P2 occurs negatively
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The wrong way to convert to CNF
Step 1: push negations to the leaves.   Repeat:

¬(α ∧ β)   →    (¬α ∨ ¬β) 
¬(α ∨ β)   →    (¬α ∧ ¬β)

¬¬α →   α

Step 2: bottom up, repeat:
Let α=(A1 ∧ … ∧ Am), β =(B1 ∧ … ∧ Bn) be CNFs, with A𝑖𝑖,B𝑖𝑖 literals

α ∧ β → (A1 ∧ … ∧ Am ∧ B1 ∧ … ∧ Bn)

α ∨ β →   (A1 ∨ B1 ) ∧ (A1 ∨ B2 ) … ∧ (A1 ∨ Bn ) ∧ 
(A2 ∨ B1 ) ∧ (A2 ∨ B2 ) … ∧ (A2 ∨ Bn ) ∧
. . .

(Am ∨ B1 ) ∧ (Am ∨ B2 ) … ∧ (Am ∨ Bn ) 
35

(blows up the formula
exponentially!)



The right way to convert to CNF
Step 1: convert formula to administrative-normal form (ANF)
e ::=  let x=y∧z in e  | let x=y∨z in e  | let x=¬y in e  |  return x
(there is one “let”, and one new variable, for every operator in the original expression)

A ∨ ((B ∧ ￢A) ∧  (C ∨ ￢B)))  
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x z

let x = ￢A in
let y = B ∧ x in
let z = ￢B in
let w = C ∨ z in
let u = y ∧ w in
let v = A ∨ u in
return v

y w

u

v



The right way to convert to CNF
Step 1: convert formula to administrative-normal form (ANF)
e ::=  let x=y∧z in e  | let x=y∨z in e  | let x=¬y in e  |  return x

Step 2: turn each line of ANF into CNF
let x=y∧z in   ⇒      x↔(y∧z)     ⇒ (¬x ∨ y) ∧ (¬x ∨ z) ∧ (¬y ∨¬z ∨ x)
let x=y∨z in ⇒ x↔(y∨z)     ⇒  (¬x ∨ y ∨ z) ∧ (¬y ∨x) ∧ (¬z ∨ x)
let x=¬y in ⇒      x ↔¬y ⇒  (¬x ∨ ¬y) ∧ (x ∨ y) 
return x ⇒ x

then  and all those conjuncts together.
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Resulting term has size linear in the size of the original, but has extra variables.
The new formula is not tautologically equivalent to the original!  (Why?)
But it is  equisatifiable:   the new formula is satisfiability iff the original is.



A-Normal Form,   digital circuits
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let x = ￢A in
let y = A ∨ B in
let u = x ∧ y in
let Z = u ∨ y in
return Z

An ANF expression is equivalent to a combinational Boolean circuit.
Either notation can comfortably express common subexpressions.

Each line of ANF is one logic gate of the circuit.
Each line of ANF, each logic gate, can be expressed as a constant-size set of CNF conjuncts.

CNF can model digital circuits as conveniently as it can model Boolean formulas.

x

y

u



How to use a SAT-solver
1. Express your verification problem as a 

Boolean formula
– Usually you are interested in proving this 

formula is valid.
2. Convert the negation of your formula to 

Conjunctive Normal Form
3. Run a SAT solver to prove UNSAT

– (or if not UNSAT, to find a counterexample,   
that is, a satisfying assignment)
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Journal of the ACM, July 1960



Martin Davis  (1928 - )
winner of the 2009 Pioneering Achievement Award from 
ACM SIG Design Automation, “ For his fundamental 
contributions to algorithms for solving the Boolean 
Satisfiability problem, which heavily influenced modern 
tools for hardware and software verification, as well as 
logic circuit synthesis.”

PhD Princeton 1950  (adviser: Alonzo Church)
Professor, New York University

Coinventor of Davis-Putnam algorithm (1960)
for resolution theorem proving



Hilary Putnam, 1926-2016

PhD (Philosophy) 1951, UCLA
Professor: 
Northwestern, Princeton, MIT

(1951-1965)
Harvard (1965-2000 )

Main interests

Philosophy of mind
Philosophy of language
Philosophy of science
Philosophy of mathematics
Metaphilosophy
Epistemology

Notable ideas

Multiple realizability
Functionalism
Causal theory of reference
Semantic externalism
Brain in a vat · Twin Earth
Internal realism



Davis-Putnam Algorithm
From now on, unless otherwise indicated, we assume formulas are 
in CNF, or, equivalently, that we have a set of clauses to 
check for satisfiability (i.e. the conjunction is implicit).

The first algorithm to try something more sophisticated than
the truth-table method was the Davis-Putnam (DP) algorithm,
published in 1960.

It is often confused with the later, more popular algorithm 
presented by Davis, Logemann, and Loveland in 1962, which we 
will refer to as Davis-Putnam-Logemann-Loveland (DPLL).

We first consider the original DP algorithm.
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Davis-Putnam Algorithm
There are three satisfiability-preserving transformations in DP.
• The 1-literal rule
• The affirmative-negative rule
• The rule for eliminating atomic formulas

The first two steps reduce the number of literals in the
formula.

The last step reduces the number of variables in the formula.

By repeatedly applying these rules, eventually we obtain a
formula containing an empty clause, indicating unsatisfiability,
or a formula with no clauses, indicating satisfiability.
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Davis-Putnam Algorithm
The 1-literal rule also called  unit propagation.

Suppose (p) is a unit clause (clause containing only 
one literal). Let −p denote the negation of p where 
double negation is collapsed (i.e. −￢q ≡ q).

• Remove all instances of −p from clauses in the formula
(shortening the corresponding clauses).

• Remove all clauses containing p (including the unit clause itself).
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Davis-Putnam Algorithm
The affirmative-negative rule

also called the  pure literal rule.

• If a literal appears only positively 
or only negatively,
delete all clauses containing that literal.

Why does this preserve satisfiability?
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Davis-Putnam Algorithm
The resolution rule
• Choose a propositional symbol 𝑝𝑝 which occurs positively in at least one 

clause and negatively in at least one other clause.
• Let P be the set of all clauses in which 𝑝𝑝 occurs positively.
• Let N be the set of all clauses in which 𝑝𝑝 occurs negatively.
• Replace the clauses in P and N with those obtained by resolution on 𝑝𝑝

using all pairs of clauses from P and N.
• For each pair of clauses, 

(𝑝𝑝 ∨ 𝑙𝑙1 ∨ · · · ∨ 𝑙𝑙m) and (￢𝑝𝑝 ∨ 𝑘𝑘1 ∨ · · · ∨ 𝑘𝑘n),
resolution on p forms the new clause

(𝑙𝑙1 ∨ · · · ∨ 𝑙𝑙m ∨ 𝑘𝑘1 ∨ · · · ∨ 𝑘𝑘n).

48

Warning!   The number of new clauses is  |P|·|N| , 
so  each resolution can cause quadratic blowup, 
and a series of resolutions can cause exponential blowup.



DPLL Algorithm
In the worst case, the resolution rule can cause a quadratic expansion 
every time it is applied.
For large formulas, this can quickly exhaust the available memory.

The DPLL algorithm replaces resolution with a splitting rule.

• Choose a propositional symbol 𝑝𝑝 occuring in the formula.
• Let Δ be the current set of clauses.
• Test the satisfiability of Δ ∪ {(p)}.
• If satisfiable, return True.
• Otherwise, return the result of testing Δ ∪ {(￢p)} for satisfiability.
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Martin Davis,  George Logemann, Donald Loveland 1962



In this paper, we describe the development of a new complete 
solver, Chaff, which achieves significant performance gains 
through careful engineering of all aspects of the search—
especially  a particularly efficient implementation of Boolean 
constraint propagation and a novel low-overhead decision 
strategy.



Some Experimental Results
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Problem truth table DP DPLL
prime 3 0.00 0.00 0.00
prime 4 0.02 0.06 0.04
prime 9 18.94 2.98 0.51
prime 10 11.40 3.03 0.96
prime 11 28.11 2.98 0.51
prime 16 >3600.00 out of memory 9.15
ramsey 3 3 5 0.03 0.06 0.02
ramsey 3 3 6 5.13 8.28 0.31
adder 3 2 >>3600.00 6.50 7.34
adder 4 2 >>3600.00 22.95 46.86
adder 5 2 >>3600.00 44.83 170.98
adder 6 3 >>3600.00 out of memory 1186.4
adder 7 3 >>3600.00 out of memory 3759.9

John Harrison, Introduction to Logic and Automated Theorem Proving, 2009



Abstract DPLL
Abstract DPLL uses states and transitions to model the progress of the 
algorithm.

• Most states are of the form M ∥ F, where
◦ M is a stack  of annotated literals  denoting a partial truth assignment, and
◦ F is the CNF formula being checked, represented as a set of clauses.

• The initial state is ∅ ∥ F, where F is to be checked for satisfiability.

• Transitions between states are defined by a set of 
conditional transition rules.

52

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Modulo Theories: from an Abstract 
Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM, 53(6):937–977, November 2006



Abstract DPLL
• Most states are of the form M ∥ F, where
◦ M is a stack  of annotated literals denoting a partial truth assignment, and
◦ F is the CNF formula being checked, represented as a set of clauses.
• The initial state is ∅ ∥ F, where F is to be checked for satisfiability.
• Transitions between states are defined by a set of conditional transition rules.

The final state is either:
• a special fail state: fail , if F is unsatisfiable, or
• M ∥ G, where G is a CNF formula equisatisfiable with the original 

formula F, and M satisfies G
We write M ⊨ C to mean that for every truth assignment v,

v(M) = True implies v(C) = True.
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Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Modulo Theories: from an Abstract 
Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM, 53(6):937–977, November 2006



Abstract DPLL rules
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M ∥  F, C∨𝑙𝑙 ⟹      M 𝑙𝑙 ∥ F, C∨𝑙𝑙 if M ⊨ ¬C
𝑙𝑙 is undefined in M

UnitProp

M ∥  F ⟹      M 𝑙𝑙 ∥ F if
𝑙𝑙 occurs in some clause of F
−𝑙𝑙 occurs in no clause of F
𝑙𝑙 is undefined in M

PureLiteral

M ∥  F              ⟹      M 𝑙𝑙d ∥ F if 𝑙𝑙 or −𝑙𝑙 occurs in a clause of F
𝑙𝑙 is undefined in M

Decide

M 𝑙𝑙d N ∥  F, C    ⟹      M ¬𝑙𝑙 ∥ F, C if M 𝑙𝑙d N ⊨ ¬C
N contains no decision literals

Backtrack

M ∥  F, C         ⟹      fail if M ⊨ ¬C
M contains no decision literals

Fail



Example
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∅ ∥ 1∨2͞, 1͞∨2͞, 2∨3, 3͞ ∨2, 1∨4   ⟹ (PureLiteral)

4 ∥ 1∨2͞, 1͞∨2͞, 2∨3, 3͞ ∨2, 1∨4 ⟹ (Decide)    

4 1d ∥ 1∨2͞ ,1͞∨2͞, 2∨3, 3͞ ∨2, 1∨4 ⟹ (UnitProp)

4 1d 2͞ ∥ 1∨2͞ ,1͞∨2͞, 2∨3, 3͞ ∨2, 1∨4 ⟹ (UnitProp)

4 1d 2͞ 3∥ 1∨2͞ ,1͞∨2͞, 2∨3, 3͞ ∨2, 1∨4 ⟹ (Backtrack)

4 1͞ ∥ 1∨2͞, 1͞∨2͞, 2∨3, 3͞ ∨2, 1∨4 ⟹ (UnitProp)

4 1͞ 2͞ 3͞ ∥ 1∨2͞, 1͞∨2͞, 2∨3, 3͞ ∨2, 1∨4   ⟹ (Fail)

fail



Boolean constraint propagation

The most expensive part of a SAT solver is the part that checks for and applies instances of 
the UnitProp rule.

A key insight that can be used to speed this up is that as long as a clause has at least two 
unassigned literals, it cannot participate in an application of UnitProp.

For every clause, we assign two of its unassigned literals as the watched literals.

Every time a literal is assigned, only those clauses in which it is watched need to be checked 
for a possible triggering of the UnitProp rule.

For those clauses that are inspected, if UnitProp is not triggered, a new unassigned literal is 
chosen to be watched.
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M ∥  F, C∨𝑙𝑙 ⟹      M 𝑙𝑙 ∥ F, C∨𝑙𝑙 if M ⊨ ¬C
𝑙𝑙 is undefined in M

UnitProp



Other considerations
Modern SAT solvers have many other tricks to speed 
things up:

• “Backjump” & “Learn” rules
• Highly tuned code
• Optimization for cache performance
• Preprocessing and clever CNF encodings
• Automatic tuning of program parameters

There are competitions every year, connected to the 
International Conference on Theory and Applications of Satisfiability Testing
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APPLICATIONS OF SAT-SOLVERS



Program verification
• See next lecture
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Hardware (circuit) verification
• See:  across Olden Street



Symbolic model checking
Research since the 1980s pioneered by Ed Clarke.  In the 20th century, 
used Binary Decision Diagrams (BDDs), but in the 21st century . . .

60

E. Clarke, A. Biere, R. Raimi, and Y. Zhu. 
Bounded Model Checking Using Satisfiability Solving.  
Formal Methods in System Design, 19(1):7–34, 2001



Edmund Clarke, 1945-2020
PhD 1976, Cornell
Professor, CMU, 1982-2015

Adviser: 
Robert Constable, whose adviser was
Stephen Kleene, whose adviser was
Alonzo Church

Turing Award, 2007

“for . . . developing Model-Checking 
into a highly effective verification 
technology that is widely adopted 
in the hardware and software 
industries.”



Using SAT to solve peg solitaire
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https://www.youtube.com/watch?v=ILKXEnX_YGM



Modeling one move
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0
/ \

1 – 2
/ \ / \
3 – 4 – 5
/ \ / \ / \
6 – 7 – 8 – 9

/ \ / \ / \ / \
10- 11- 12- 13-14

0
/ \
1 – 2
/ \ / \
3 – 4 – 5
/ \ / \ / \
6 – 7 – 8 – 9

/ \ / \ / \ / \
10- 11- 12- 13-14

(p7)(p4)(¬p2)(¬q7)(¬q4)(q2)
(p0↔q0) (p1↔q1) (p3↔q3)(p5↔q5) (p6↔q6) (p8↔q8)
(p9↔q9) (p10↔q10) (p11↔q11)(p12↔q12) (p13↔q13) (p14↔q14)

p q
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0
/ \

1 – 2
/ \ / \
3 – 4 – 5
/ \ / \ / \
6 – 7 – 8 – 9

/ \ / \ / \ / \
10- 11- 12- 13-14

0
/ \
1 – 2
/ \ / \
3 – 4 – 5
/ \ / \ / \
6 – 7 – 8 – 9

/ \ / \ / \ / \
10- 11- 12- 13-14

(p7)(p4)(¬p2)(¬q7)(¬q4)(q2)
(p0↔q0) (p1↔q1) (p3↔q3)(p5↔q5) (p6↔q6) (p8↔q8)
(p9↔q9) (p10↔q10) (p11↔q11)(p12↔q12) (p13↔q13) (p14↔q14)
∨
(p8)(p4)(¬p1)(¬q8)(¬q4)(q1)
(p0↔q0) (p2↔q2) (p3↔q3)(p5↔q5) (p6↔q6) (p7↔q7)
(p9↔q9) (p10↔q10) (p11↔q11)(p12↔q12) (p13↔q13) (p14↔q14)

p q
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(pҩ)(pҩ)(¬pҩ)(¬qҩ)(¬qҩ)(qҩ)
(p ҩ ↔qҩ) (pҩ ↔qҩ) (pҩ ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
∨
(pҩ)(pҩ)(¬pҩ)(¬qҩ)(¬qҩ)(qҩ)
(p ҩ ↔qҩ) (pҩ ↔qҩ) (pҩ ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
∨
. . .
∨
(pҩ)(pҩ)(¬pҩ)(¬qҩ)(¬qҩ)(qҩ)
(p ҩ ↔qҩ) (pҩ ↔qҩ) (pҩ ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)

36
of
these
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(pҩ)(pҩ)(¬pҩ)(¬qҩ)(¬qҩ)(qҩ)
(pҩ ↔qҩ) (pҩ ↔qҩ) (pҩ ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
∨
(pҩ)(pҩ)(¬pҩ)(¬qҩ)(¬qҩ)(qҩ)
(pҩ ↔qҩ) (pҩ ↔qҩ) (pҩ ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
∨
. . …
∨
(pҩ)(pҩ)(¬pҩ)(¬qҩ)(¬qҩ)(qҩ)
(pҩ ↔qҩ) (pҩ ↔qҩ) (pҩ ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)

13 of these

(pҩ)(pҩ)(¬pҩ)(¬qҩ)(¬qҩ)(qҩ)
(pҩ ↔qҩ) (pҩ ↔qҩ) (pҩ ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
∨
(pҩ)(pҩ)(¬pҩ)(¬qҩ)(¬qҩ)(qҩ)
(pҩ ↔qҩ) (pҩ ↔qҩ) (pҩ ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
∨
. . .. . …
∨
(pҩ)(pҩ)(¬pҩ)(¬qҩ)(¬qҩ)(qҩ)
(pҩ ↔qҩ) (pҩ ↔qҩ) (pҩ ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)

(pҩ)(pҩ)(¬pҩ)(¬qҩ)(¬qҩ)(qҩ)
(pҩ ↔qҩ) (pҩ ↔qҩ) (pҩ ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
∨
(pҩ)(pҩ)(¬pҩ)(¬qҩ)(¬qҩ)(qҩ)
(pҩ ↔qҩ) (pҩ ↔qҩ) (pҩ ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
∨
. . .. . …
∨
(pҩ)(pҩ)(¬pҩ)(¬qҩ)(¬qҩ)(qҩ)
(pҩ ↔qҩ) (pҩ ↔qҩ) (pҩ ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)
(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)(pҩ↔qҩ) (pҩ↔qҩ) (pҩ↔qҩ)

This is 210 variables and thousands of clauses.  No problem!  
Solves in about 1.5 seconds.    Other encodings solve in 0.06 seconds.

Why?  Abstract DPLL is very efficient at unit propagation, et cetera.


	Slide Number 1
	Outline
	Propositional Logic
	Semantics of propositional Logic
	Truth Tables
	Complex Truth Tables
	Complex Truth Tables
	Complex Truth Tables
	Complex Truth Tables
	Slide Number 10
	Slide Number 11
	⊨True   versus   ⊢Valid
	Definitions ⊨
	Definitions   ⊢
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Examples
	Some tautologies
	The intractability of SAT
	Determining satisfiability using truth tables
	Determining satisfiability using truth tables
	Slide Number 25
	P = NP
	Garey and Johnson 1979
	SAT in the 20th century
	A conversation in 1981
	Slide Number 30
	SAT in the 21st century
	Slide Number 32
	CNF
	CNF
	The wrong way to convert to CNF
	The right way to convert to CNF
	The right way to convert to CNF
	A-Normal Form,   digital circuits
	How to use a SAT-solver
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Davis-Putnam Algorithm
	Davis-Putnam Algorithm
	Davis-Putnam Algorithm
	Davis-Putnam Algorithm
	Davis-Putnam Algorithm
	DPLL Algorithm
	Slide Number 50
	Some Experimental Results
	Abstract DPLL
	Abstract DPLL
	Abstract DPLL rules
	Example
	Boolean constraint propagation
	Other considerations
	Applications of sat-solvers
	Program verification
	Symbolic model checking
	Slide Number 61
	Using SAT to solve peg solitaire
	Modeling one move
	Modeling one move
	Modeling one move
	Modeling consecutive moves

