
COS 426: Computer Graphics (Spring 2021)

Zheng Shi, Catherine Yu, June Ho Park

Assignment 2:
Advanced Features



Agenda

● General tips on tackling A2
● Going over more advanced features of A2

○ Scale-Dependent Smoothing
○ Truncate, Extrude, Bevel
○ Triangle/Quad Topology
○ Loop/Catmull-Clark Subdivision
○ Curvature



Logistics

● Midterm is Thursday, 03/11
○ Practice exam will be released next week
○ Next week’s precept will be a review session
○ Exercises page

https://www.cs.princeton.edu/courses/archive/spring21/cos426/exercises


One Primitive A Time

● Start local
○ Modifications to a primitive shouldn’t affect other 

primitives
● Work with one primitive first



Decouple Topology and Geometry

● Topology
○ Relations between structures defining the mesh

■ eg. What vertices do I need to add?
■ eg. Between what vertices should I add an edge?

● Geometry
○ Spatial relationships, shape, form

■ eg. Where on the edge should I insert the vertex?

● Figure out topology first, then geometry



Other Tips

● Caution with data
○ Do I need to store information about data before 

modifying them?
● Keep track of new vs old primitives (faces, 

vertices, half edges)
○ New primitives are always added at the end of 

their respective arrays



Other Tips

● Count primitives after modifications
○ console.log is your friend!

● Draw your operations out
● Check your helper functions and mesh 

traversal functions
● Applying operations to selected primitives



Scale-Dependent Smoothing

● Scale delta to              where 



Truncate

● Cut the corners off of a shape
● For every vertex with N edges…

○ Add N-1 vertices
○ Add 1 face

■ How many edges?



Truncate - Topology

● Consider a vertex with 3 edges
● So we need to add 2 vertices, 1 face

Initial SplitEdgeMakeVert x 2 SplitFaceMakeEdge

Note that the blue 
vertices should be 
on top of original 
vertex in reality.

They are moved 
apart for easier 
visualization.



Truncate - Geometry

● Now we move vertices along the edges
○ Calculate all offset vectors before applying changes

After Making Face Apply Offsets



Extrude

● Each face is moved along its normal
● For each N-gon face:

○ Add N vertices
○ Add N faces



Extrude - Topology

● Note again that the visualizations don’t 
represent accurate spatial relations

● New blue vertices should be directly on top of 
the old ones at first!!!



Extrude - Topology

● Let’s think about the end result for 1 face
Topological View:3D View:

f0

f0



Extrude - Topology

● Denote ov for old vert and nv for new vert



Extrude - Topology

● First, insert 4 new vertices
○ SplitEdgeMakeVert x 4
○ Again, there’s no actual 

movement happening

Topological View:

Reality:

nv2 nv1

nv0nv3



Extrude - Topology

● Then, split 4 adjacent faces
○ SplitFaceMakeEdge x 4
○ Between which 2 vertices 

should we split the face each 
time?

○ Which vertex would we like 
on which face at the end?

Topological View:



Extrude - Topology

● Then, split 4 adjacent faces
○ SplitFaceMakeEdge x 4
○ Between which 2 vertices 

should we split the face each 
time?

○ Which vertex would we like 
on which face at the end?

Topological View:



Extrude - Topology

● We want to connect the new vertices

nv3 nv0

ov0ov3

nv3 nv0

ov0ov3

splitFaceMakeEdge()f

nf0

f

nf0

nf5



Extrude - Topology

● Now join the two new faces

nv3 nv0

ov0ov3

joinFaceKillEdge()

f

nf0

nv3 nv0

ov0ov3

f

nf0

nf5



Extrude - Geometry

● Simple
○ Move each new vert by factor * f.normal



Bevel

● We want to “flatten” 
corners and edges
○ Each edge “becomes” a 

face
○ Each vertex “becomes” a 

face



Bevel - Topology

● A good place to start is Vertex => Face, aka 
truncate 

● Now we want to convert edges to faces
○ Let’s consider one edge



Bevel - Topology

● For each corner face, split all of its edges in 
half



Bevel - Topology

● For each long edge (v1, v2)…
■ Connect the neighboring verts of v1 and v2
■ Remove the original long edge
■ Remove v1 and v2

splitFaceMakeEdge x 2 joinFaceKillEdge joinEdgeKillVert x 2
v1

v2



Bevel - Geometry

● Simply move each vertex closer to the 
centroid of its corresponding face based on 
the factor parameter



Triangle Topology

● Splits each selected face in the 
mesh into four triangles

● First, split all n-gons into triangles
○ Filters.triangulate()



TriTop - Topology

● Split all edges
○ For each face, add 3 vertices and 3 faces
○ Create a list of all half edges beforehand

■ When you split a half edge, opposite will be split, so you 
need to keep track - avoid double splitting

splitEdgeMakeVert() x 3



TriTop - Topology

● Join new vertices around a face
○ Keep track of new indices by index - new ones are 

always added to end of verts array
● Do edge splits and join verts in separate 

loops
splitFaceMakeEdge() x 3



TriTop - Loop Subdivision

● Calculate new positions of vertices as you 
perform triangle topology

■ Find positions of old verts before adding new verts, and 
positions of new verts before joining them

● One TriTop is done, update positions

These weights are w/ 
respect to the old 
vertices!

Odd Even



TriTop - Loop Subdivision

● On boundary edges, use a different mask:

● To prevent degenerate faces, non-selected 
faces that touch the boundary should receive 
a TriTop subdivision.



Quad Subdivision 

● Split each edge
● Join any 2 new vertices
● Split this new edge, 

denote this vert nv0
● Join the rest of the new 

vertices with nv0
● Move nv0 to centroid



Catmull-Clark Subdivision

Old VerticesCentroids MidPoints

n = number of neighbors of vert



Catmull-Clark Subdivision

Old Vertices MidPoints Centroids

n = number of neighbors of vert



Catmull-Clark Subdivision

● Boundaries: Same boundary weights as loop, 
but more complicated when dealing with 
boundary faces. 
○ Details are included in the assignment 

description



Curvature 

● We want to calculate the curvature associated 
with a vertex

● Then color it based on its curvature



Curvature 

● This paper: Akleman, 2006
● Section 2.2 is the most relevant part

○ Gaussian curvature = angular deflection / area 
associated with vertex

○ Area associated with vertex = Sum of area of faces 
neighboring vertex

● (This makes for really good art submissions!)

https://pdfs.semanticscholar.org/5995/6ffab254b3dfd4dddb0fcef5225ba3589b92.pdf

