Assignment 2: Advanced Features

COS 426: Computer Graphics (Spring 2021)

Agenda

- General tips on tackling A2

Going over more advanced features of A2

- Scale-Dependent Smoothing
- Truncate, Extrude, Bevel
- Triangle/Quad Topology
- Loop/Catmull-Clark Subdivision
- Curvature

Logistics

Midterm is Thursday, 03/11

- Practice exam will be released next week
- Next week's precept will be a review session
- Exercises page

One Primitive A Time

- Start local
- Modifications to a primitive shouldn't affect other primitives
- Work with one primitive first

Decouple Topology and Geometry

- Topology
- Relations between structures defining the mesh
- eg. What vertices do I need to add?
- eg. Between what vertices should I add an edge?
- Geometry
- Spatial relationships, shape, form
- eg. Where on the edge should I insert the vertex?
- Figure out topology first, then geometry

Other Tips

- Caution with data
- Do I need to store information about data before modifying them?
- Keep track of new vs old primitives (faces, vertices, half edges)
- New primitives are always added at the end of their respective arrays

Other Tips

- Count primitives after modifications
- console. log is your friend!
- Draw your operations out
- Check your helper functions and mesh traversal functions
Applying operations to selected primitives

Scale-Dependent Smoothing

- Scale delta to $\delta \cdot \frac{A}{A_{v}}$ where

$$
\begin{gathered}
A_{v}=\sum_{f_{i} \in 1 \text { ring }} \operatorname{area}\left(f_{i}\right) \\
A=\frac{1}{N_{v}} \cdot \sum_{v_{i} \in V} A_{v_{i}} \\
A=\frac{3}{N_{v}} \cdot \sum_{f_{i} \in F} \operatorname{area}\left(f_{i}\right)
\end{gathered}
$$

Truncate

- Cut the corners off of a shape
- For every vertex with N edges...
- Add N-1 vertices
- Add 1 face
- How many edges?

Truncate - Topology

- Consider a vertex with 3 edges
- So we need to add 2 vertices, 1 face

Initial

SplitEdgeMakeVert x 2

SplitFaceMakeEdge

Note that the blue vertices should be on top of original vertex in reality.

They are moved apart for easier visualization.

Truncate - Geometry

Now we move vertices along the edges

- Calculate all offset vectors before applying changes

After Making Face

Apply Offsets

Extrude

Each face is moved along its normal
For each N -gon face:

- Add N vertices
- Add N faces

Extrude - Topology

- Note again that the visualizations don't represent accurate spatial relations
- New blue vertices should be directly on top of the old ones at first!!!

Extrude - Topology

- Let's think about the end result for 1 face

3D View:
Topological View:

Extrude - Topology

Denote ov for old vert and nv for new vert

Extrude - Topology

- First, insert 4 new vertices
- SplitEdgeMakeVert x 4
- Again, there's no actual movement happening

Reality:

Topological View:

Extrude - Topology

- Then, split 4 adjacent faces
- SplitFaceMakeEdge x 4
- Between which 2 vertices should we split the face each time?
- Which vertex would we like on which face at the end?

Topological View:

Extrude - Topology

- Then, split 4 adjacent faces
- SplitFaceMakeEdge x 4
- Between which 2 vertices should we split the face each time?
- Which vertex would we like on which face at the end?

Topological View:

Extrude - Topology

- We want to connect the new vertices

Extrude - Topology

- Now join the two new faces

Extrude - Geometry

- Simple
- Move each new vert by factor * f.normal

Bevel

- We want to "flatten"
corners and edges
- Each edge "becomes" a face
- Each vertex "becomes" a face

Bevel - Topology

- A good place to start is Vertex => Face, aka truncate
- Now we want to convert edges to faces
- Let's consider one edge

Bevel - Topology

For each corner face, split all of its edges in half

Bevel - Topology

- For each long edge (v1, v2)...
- Connect the neighboring verts of v 1 and v 2
- Remove the original long edge
- Remove v1 and v2

Bevel - Geometry

- Simply move each vertex closer to the centroid of its corresponding face based on the factor parameter

Triangle Topology

- Splits each selected face in the mesh into four triangles
- First, split all n-gons into triangles
- Filters.triangulate()

TriTop - Topology

- Split all edges
- For each face, add 3 vertices and 3 faces
- Create a list of all half edges beforehand
- When you split a half edge, opposite will be split, so you need to keep track - avoid double splitting

TriTop - Topology

- Join new vertices around a face
- Keep track of new indices by index - new ones are always added to end of verts array
- Do edge splits and join verts in separate loops

TriTop - Loop Subdivision

- Calculate new positions of vertices as you perform triangle topology
- Find positions of old verts before adding new verts, and positions of new verts before joining them
- One TriTop is done, update positions

$$
\beta= \begin{cases}\frac{3}{8 n} & n>3 \\ \frac{3}{16} & n=3\end{cases}
$$

TriTop - Loop Subdivision

- On boundary edges, use a different mask:

a. Masks for odd vertices
b. Masks for even vertices
- To prevent degenerate faces, non-selected faces that touch the boundary should receive a TriTop subdivision.

Quad Subdivision

- Split each edge
- Join any 2 new vertices
- Split this new edge, denote this vert nvo
- Join the rest of the new vertices with $n v_{0}$
- Move nv ${ }_{0}$ to centroid

Catmull-Clark Subdivision

$n=$ number of neighbors of vert

Catmull-Clark Subdivision

Centroids

Catmull-Clark Subdivision

- Boundaries: Same boundary weights as loop, but more complicated when dealing with boundary faces.

Details are included in the assignment description

Curvature

- We want to calculate the curvature associated with a vertex
- Then color it based on its curvature

Curvature

- This paper: Akleman, 2006
- Section 2.2 is the most relevant part
- Gaussian curvature = angular deflection / area associated with vertex
- Area associated with vertex = Sum of area of faces neighboring vertex
- (This makes for really good art submissions!)

