
COS 426: Computer Graphics (Spring 2021)

Julian Knodt & Zheng Shi
(Orig. by Reilly Bova & Will Sweeny)

Introducing the Final Project:
The Fundamentals of Web Graphics

Agenda

● Final Project
○ Overview
○ Tips and Tricks

● Fundamentals of Web Graphics
● ThreeJS Crash Course

○ Anatomy of a Scene
○ A Basic Scene
○ Tips and Tricks

● Timelines
○ Specifications now available
○ Proposals in-class, Apr 27 (1-2 slides)
○ Intermediary Written Report, May 5 (Dean’s date)
○ Presentations and Demos, May 14

● Work in groups of 2-4
○ Each group will be assigned to one TA after proposal due
○ Larger groups are held to higher expectations
○ Start forming groups NOW

● More details covered in Apr 22 lecture and project specs

Final Project: Overview

Final Project: Expectations

● Finding an Idea
○ This project is truly open ended — pick any topic as long as your

contributions are related to computer graphics
○ Most groups will choose to make creative mini games or art

demos using ThreeJS (to which our advice will thus cater)
● Potential Pitfalls

○ Don’t overscope your project! Pick a well-defined idea that you
can reasonably implement over 3 weeks, and set stretch goals

○ If going the ThreeJS route, avoid ideas that require complex
external assets (e.g. large models and articulated animations)

Final Project: Expectations

● Implementation
○ You should start reading tutorials early, especially if you plan

to work with ThreeJS. There are great guides out there, and we
have linked some useful resources in the project specs.

○ You are allowed and encouraged to leverage online
resources/libraries for your project
■ E.g. use a physics library so long as physics isn’t your main focus
■ You may borrow from online tutorials and examples
■ Don’t let external resources dwarf your own code or

contributions. This has been a problem in the past.

Final Project: Tips & Examples

● Tips
○ Start early! Try to find a project group and project idea before

the end of this weekend!
○ Reach out to TAs via Piazza before the in-class proposal day

to get extra feedback and advice
○ When brainstorming your project:

■ Look through projects on the ThreeJS homepage
■ Familiarize yourself with what ThreeJS can do via the library’s

official example page.
■ Check out the ThreeJS interactive editor (WIP)

https://threejs.org/
https://threejs.org/examples/?q=ocean#webgl_shaders_ocean
https://threejs.org/editor/

Final Project: Tips & Examples

● Tips (continued)
○ Look through the Assignment 5 coursejs/ scripts and try to

understand how we are using ThreeJS.
○ Some simple starter code are available at the project specs to

help you get started.
● Examples

○ Check out the final project “Hall of Fame” on our course site
○ View all of submissions from 2019 here

https://www.cs.princeton.edu/courses/archive/spring20/cos426/links#final-project-hall-of-fame
https://www.cs.princeton.edu/courses/archive/spring19/cos426/assign/project/final-projects.html

Fundamentals of Web Graphics

● The HTML Canvas
○ Everything you see (with one exception) is plain static HTML

styled with CSS
■ Dynamic websites use JavaScript to interact with HTML

○ The one exception is the <canvas /> element, which is a
container for graphics drawn through JavaScript

○ Browser features like WebGL and JS libraries like ThreeJS
allow application developers to draw complex scenes onto
canvases.

Fundamentals of Web Graphics

HTML Canvas

Fundamentals of Web Graphics

● Let’s try animating a simple
program, such as a cloth
simulator

● Assume that the function
already takes care of
drawing what we want to
the canvas

● How do we go about
animating our program?

/*
 * A function that we want to
 * execute every frame
 */
const advanceProgram = () => {

simulateProgram();
drawProgram();

};

// Draw program once to screen
advanceProgram();

Fundamentals of Web Graphics

● How do we go about
animating our program?

● Idea:
○ Use a while loop!

// Animation Attempt #1 (Bad)
while (true) {

advanceProgram();
}

Fundamentals of Web Graphics

● How do we go about
animating our program?

● Idea:
○ Use a while loop!

● Problem:
○ Will slow down your

browser tab (JavaScript
is not multithreaded)

○ What if your program is
executing at an
extremely high rate?

// Animation Attempt #1 (Bad)
while (true) {

advanceProgram();
}

Fundamentals of Web Graphics

● How do we go about
animating our program?

● Idea:
○ Use a callback to

execute once every
60th of a second

// Animation Attempt #2 (Bad)

// Settings
const targetFPS = 60;
const msTimer = 1000/targetFPS;

// Invoke every msTimer millisecs
setInterval(

advanceProgram,
msTimer

);

Fundamentals of Web Graphics

● How do we go about
animating our program?

● Idea:
○ Use a callback to

execute once every
60th of a second

● Problem:
○ What if your program is

slower than targetFPS?

// Animation Attempt #2 (Bad)

// Settings
const targetFPS = 60;
const msTimer = 1000/targetFPS;

// Invoke every msTimer millisecs
setInterval(

advanceProgram,
msTimer

);

Fundamentals of Web Graphics

● How do we go about
animating our program?

● Idea:
○ Set timer from within

animation loop

// Animation Attempt #3 (Bad)
const renderLoop = () => {

advanceProgram();

// Recur msTimer ms from now
setTimer(

renderLoop,
msTimer

);
};
renderLoop();

Fundamentals of Web Graphics

● How do we go about
animating our program?

● Idea:
○ Set timer from within

animation loop
● Problem:

○ What will happen to
our framerate if our
program takes a while?

// Animation Attempt #3 (Bad)
const renderLoop = () => {

advanceProgram();

// Recur msTimer ms from now
setTimer(

renderLoop,
msTimer

);
};
renderLoop();

Fundamentals of Web Graphics

● How do we go about
animating our program?

● Idea:
○ Use the optimized

built-in function:
requestAnimationFrame

○ Browser invokes
callback before next
repaint of screen

// Animation Attempt #4 (Correct)
const renderLoop = () => {

requestAnimationFrame(
renderLoop

);
advanceProgram();

};
// Invoke to start
requestAnimationFrame(

renderLoop
);

ThreeJS: Anatomy of a Scene

A Scene is an organized collection of
objects in space: meshes, cameras, and
lights

● Meshes consist of some polygonal
Geometry, rendered using some
visual Material
○ Materials can also use Textures

● Cameras let us view the scene
○ (from a particular position and angle)

● Lights illuminate the meshes in the
scene, based on their material

ThreeJS: Anatomy of a Scene

Other useful scene objects:

● A Renderer draws a camera’s view
of the scene as pixels to the screen

● A Group is like a “sub-scene”: lets us
modify entire collections at once
○ Conceptually like a reference frame or

coordinate system
○ Keeps your code clean!

● Camera controls alter a camera’s
params using keyboard + mouse
○ ThreeJS contains useful scripts to

setup common control patterns

ThreeJS: A Basic Scene

● Set up a renderer,
scene, and camera.

● Add lights.
● Create some meshes to

populate the scene.
● Animate the scene.
● Make the scene

responsive.

// Init scene
const scene = new THREE.Scene();
// Init camera (fov, aspect ratio, near, far)
const [width, height] = [

window.innerWidth, window.innerHeight
];
const camera = new THREE.PerspectiveCamera(

75, width/height, 0.1, 1000
);

// Init renderer; attach to HTML canvas
const renderer = new THREE.WebGLRenderer();
renderer.setSize(width, height);
document.body.appendChild(

renderer.domElement
);

ThreeJS: A Basic Scene

● Set up a renderer,
scene, and camera.

● Add lights.
● Create some meshes to

populate the scene.
● Animate the scene.
● Make the scene

responsive.

// Many lighting solutions in ThreeJS
// point lights, directional lights, etc.

const light = new THREE.HemisphereLight(
0xffffbb, // sky color
0x080820, // ground color
1 // intensity

);

scene.add(light);

ThreeJS: A Basic Scene

● Set up a renderer,
scene, and camera.

● Add lights.
● Create some meshes to

populate the scene.
● Animate the scene.
● Make the scene

responsive.

// width, height, depth
const cubeGeo = new

THREE.BoxGeometry(1,1,1);

const redMat = new
THREE.MeshPhongMaterial({color: 0xdd2244})

const c1 = new THREE.Mesh(cubeGeo, redMat)
c1.position.set(-2, 0, -5);
scene.add(c1);

const c2 = new THREE.Mesh(cubeGeo, redMat)
c2.position.set(+2, 0, -5);
scene.add(c2);

const cubes = [c1, c2];

ThreeJS: A Basic Scene

● Set up a renderer,
scene, and camera.

● Add lights.
● Create some meshes to

populate the scene.
● Animate the scene.
● Make the scene

responsive.

// Animation Attempt #4 Adaption
const renderLoop = (timeMs) => {

const time = timeMs * 0.0001;
requestAnimationFrame(renderLoop);

cubes.forEach((cube, index) => {
 const speed = 1 + index * 0.1;
 const rot = time * speed;
 cube.rotation.x = rot;
 cube.rotation.y = rot;

});
renderer.render(scene, camera);

};

// Set callback to begin animation
requestAnimationFrame(renderLoop);

ThreeJS: A Basic Scene

● Set up a renderer,
scene, and camera.

● Add lights.
● Create some meshes to

populate the scene.
● Animate the scene
● Make the scene

responsive.

// Window resize event handler
const resizeHandler = () => {

// Grab new width and heights
const [width, height] = [

window.innerWidth,
window.innerHeight

];
renderer.setSize(width, height);
camera.aspect = width / height;
camera.updateProjectionMatrix();

 }

// Add to resize event listener
window.addEventListener(

"resize", resizeHandler, false
);

ThreeJS: A Basic Scene

Try the demo!

https://codepen.io/reillybova/pen/VwvPbbL

Final Project: Tips & Tricks

● For a project of this scope, the best projects are often stylized to
take advantage of the simple geometries and materials ThreeJS
provides off the bat.
○ For instance, using wireframe meshes and adding a final bloom

pass will make everything look like a neon sign.
○ That said, ThreeJS also supports materials for very realistic textures.

● Consider using a physics engine, or look into using a Web
Worker to take physics off the main thread if it’s expensive.

● Familiarize yourself with the many geometries, materials, and
shaders that ThreeJS provides!
○ The ThreeJS examples page has a good overview of these.

https://en.wikipedia.org/wiki/Bloom_(shader_effect)

Final Project: Tips & Tricks

● Read the ThreeJS guide on how to dispose of objects.
● An important optimization is to merge large objects as

described in this tutorial.
● Delegate certain tasks to each member of your group!

○ E.g. a single person should be responsible for physics, another for
gameplay, yet another person for lighting, etc.

● Spend time planning out your project. A game-plan will save you
time in the long run.

● Keep your code clean and well-organized!
● Commenting and modularizing your code from the start will

only make your life (and your partners’ lives) easier

https://threejs.org/docs/#manual/en/introduction/How-to-dispose-of-objects
https://threejsfundamentals.org/threejs/lessons/threejs-optimize-lots-of-objects.html

Final Project: Tips & Tricks

● Try to use appropriate abstractions for your project whenever
possible
○ e.g. an Animal class might have Animal.move(), Animal.eat(),

Animal.draw()
○ Helps keep you focused on core logic, rather than boring details of

updating & moving meshes
● Use THREE.Group, THREE.Scene (or the equivalent of your

framework) to operate on groups rather than huge lists.
○ Related to this, take advantage of local reference frames within the

global scene graph if you need coordinated movement

