Introducing Assignment 1:

Image Processing

COS 426: Computer Graphics (Spring 2021)

Reilly Bova, Ethan Tseng, Julian Knodt

Same layout as AO:

Run “python3 -m http.server” (or similar) inside
the assignment directory
Open “http://localhost:8000" in web browser

GUI

C0OS426 Assignment 1
Image Processing — Interactive Mode

Switch to: Writeup

Student Name <NetID>

Push Image
Batch Mode
Animation
MorphLines
* SetPixels

v Luminance
Brightness
Contrast
Gamma
Vignette
Histogram
* Color

* Filters

* Dithering
* Resampling
* Composite

* Misc

Close Controls

~ History

v 1: Push Image

I image name flower.jpg k2

Delete Below
v 2: Brightness

l brightness -l

Delete

Close Controls

GUI

Useful functions
— Push Image

— Animation: generate gif animation using (min, step,
max)

- MorphLines: specify line correspondences for
morphing

- BatchMode: fix current parameter settings

GUI

Features to implement

— SetPixels: set pixels to certain colors (This was AQ)

— Luminance: change pixel luminance

— Color: remap pixel colors

— Filter: convolution/box filter

— Dithering: reduce visual artifacts due to quantization = cheat our eyes
— Resampling: interpolate pixel colors

— Composite: blending two images

— Misc

Features

Luminance Dithering
- Brightness - Quantization
- Contrast - Random dithering
- Gamma - Floyd-Steinberg error diffusion
- Vignette - Ordered dithering
- Histogram equalization
Color Resampling
- Grayscale - Bilinear sampling
- Saturation - Gaussian sampling
- White balance - Translate
- Histogram matching - Scale
Filter - Rotate
- Gaussian - Swirl
- Sharpen
- Edge detect Composite
- Median - Composite

Bilateral filter - Morph

A few reminders...

Don’t try to exactly replicate example images.
Choose parameters in your code which give you
best looking results.

Have fun!

Changing Contrast

GIMP formula
value = (value - 0.5) * (tan ((contrast + 1) * P1/4)) + 0.5;

— "Difference above mid-value times contrast multiplier, plus
mid-value”

— When contrast=1, tan(P1/2) is infinite, think about limit and
what is reasonable

— Clamp pixel to [0, 1] after computing the value.

— Apply to each channel separately.

AT i ,
N ‘ 2 ’ - .
A W ' - iy) ‘)
i . | N e/ 7 e/ / tie
0 0:5 1.0

Gamma correction

R = R*gamma, G = G*gamma, B = BAgamma

R,G,B are typically in [0, 1] (default in the code base)

Second arg of gammarFilter(image, logOfGamma) is log(gamma)
— So use gamma = Math.exp(logOfGamma)

Exponentiation in JS is “Math.pow(base, exponent)” or (ES7 / ES2017+) “base**pow”
— Your browser might not support ES7

Vignette

Pixels within inner radius remain unchanged

Pixels outside outer radius are black

Pixels between innerR and outerR should be multiplied with a value in [0, 1]:
— Multiplier =1 - (R - innerR) / (outerR - innerR)

— R =sqrt(x*?2 + y*2) / halfdiag

Similar to soft brush

Multiplier map

Histogram Equalization

Transform an image so that it has flat histogram of
luminance values.

Before

Histogram Matching

Transform an image so that it has same histogram of
luminance values as reference image.

reference image: flower

Histogram Equalization/Matching

0.15F

=)
A

frequency

0.05¢

0 5 10
gray level

| WHHHH

0 5 10

gray level

cdf

Histogram Equalization/Matching

* Image: X
* Number of gray levels: L
: n; : :
* pdf(i) = ;‘ n; = number of pixels of the i-th gray level
¢ Cdf(i) —_ 3:0 pdf(i) A Cummulative probability distribution (normalised)
1 b o e 4.
* Target cdf: :
' Reference cummulative
» Equalization: .
. { : ummulative
y Cdf ref (l) = E : ;C):robabillityt distribution G(x)
* Matching: e frreomeeanenanens :
* cdf of the reference image
X; X

ol /

(source:http://paulbourke.net/miscellaneous/equalisation/)

Histogram Equalization/Matching

* Target cdf:
* Equalization:
o Cdfref(l) — ﬁ A, Cummulative probability distribution (normalised)
* Matching:

* cdf of the reference image D aniey . romulstive

distribution H(x)

Cummulative
probability distribution G(x)

* Implementation
* Equalization :

e x' =(cdf(x) *(L —1)) /(L — 1) G(xj) = H(x)) """""""" R !
 Matching : : :

e x' = argmiin lcdf (x) — cdfyer (D)

x/
* Convert back to gray level: x' = — 0
L-1 X: X: "

Saturation

* pixel = pixel + (pixel - gray(pixel)) * ratio
* Do clamp()

White balance

whitebalance(image, rgb,,)

Ly, M,,,S,,] =rgb2lms(rgb,,)

for each pixel x in image
[L, M, S] = rgb2lms(image(x))
L=L/L,
M=M/ M,
S=S/S,
image_out(x) = Ims2rgb(L, M, S)

* Hints:
* Use rgbToXyz(), xyzToLms(), ImsToXyz(), xyzToRgb()
* Do clamp()

Convolution (Gaussian/Sharpen/Edge)

w1 w2 w3
w4 w5 w6

w7 w8 w9

Convolution (Gaussian/Sharpen/Edge)

Weights can be normalized depending on the application
Variety of ways to handle edges

— Mirror boundary

— Zero padding

— Use part of the kernel only

Gaussian filter

Create a new image to work on
Weights should be normalized to sum to 1, otherwise
average color changes

1

:

— X = distance to the center of the kernel

Linear separation optimization:

— First apply a 1D Gaussian kernel vertically and then a
1D Gaussian kernel horizontally

G(x) =

5|
Q
QW)
-y
=
— DY
N BN

Vv 2

Kernel:
-1 1 1
1 8 -1 3 1
A4 1 - -1 -1
Inside boundary At boundary

Weights sum to O
Optional to invert the edge map for visualization:
pixel = 1 - pixel

Sharpen

« Kernel:
-1 1 1
1 9 A 4 -1
I -1 -1
Inside boundary At boundary

* Weights sum to 1

Edge Filter vs Sharpen Filter

-1 -1 -1

-1 8 -1

-1 -1 -1
Edge Filter

Convolution(Image, Sharpen Filter) =

-1 -1 -1
-1 9 -1
-1 -1 -1

Sharpen Filter

Convolution(Image, Edge Filter) + Image

Median

Use a window (similar to convolution)
Choose the median within the window
Sorting: sort by RGB separately / sort by luminance

Optimization: use quick-select to find median
— Gives median in linear time

RGB Example

Bilateral

Combine Gaussian filtering in both spatial domain and color domain
Weight formula of filter for pixel (i, j):

|f1—k’,-2+lf)'—f.:'2 (2, 5)—I(k.1) ”2‘
. . 3 {_ r)g'_{ - r)a,' J
w(z, 7, k1) =e 20 2
Similar color -> large weights, Different color -> smaller weights

T

Bilateral filter weights at the central pixel

Spatial weight

Result

Multiplication of range
and spatial weights

Sampling & Frequencies

Real-world is continuous, Sensors are discrete
How many samples do we need to measure real world?

— Too few samples = aliasing

— Nyquist rate says that we need to sample at = 2x the highest frequency

for perfect reconstruction

Aliasing is when signal X masquerades as signal Y

— Yis the alias of X v

/

Fourier Transform

DC

|||||||||||||||||||||||||
0 N-1 0 N/2

f
uis
2nd Harmonic
I/'/ 2 £
.%H\‘I%H}/H%\{.%HI}” l—»—l—o—o—o—o—o—o«f
0 / fN-1 0 N2
\/ (Nyquist)

Nyquist Frequency

Maps signal from time domain to frequency domain

Use low-pass filter to remove high frequencies and prevent aliasing

/, frequency

’

Low-pass w

|

~

High-pass W

D

Band-pass W

Fourier Transform

DC

et L Use low-pass filter to remove high frequencies and prevent aliasing

0 N-1 0 N/2

‘ Maps signal from time domain to frequency domain

i
/ \ IIIIIIIII l Bandlimiting

Bandwidth

Nyquist Frequency -
t ‘

0 | 1 T (;HHH};Wf O .
VUV %

1D to 2D

2D signals follow the same analysis as 1D signals

Real world 2D image is sampled by sensor Aliasing for 2D signals

Inadequate sampling

(Barely) adequate sampling

1D to 2D

2D signals follow the same analysis as 1D signals

Fourier Analysis for 2D signals
Spatial domain Frequency domain If image resolution is low

A Il - E.g. image compression

Y

Then need to apply band-limiting filter to avoid aliasing
- E.g. Triangle, Gaussian

Note that these filters are “finite” filters, they act as
approximations to a perfect low pass filter

Resampling

Gaussian interpolation
— Weights:

G(d, 0) _ e—dz/(20'2)

Weights need to be normalized, so that surr
up to 1

Use windowSize = 3*sigma

— Sigma can be 1

Window can be square

Resampling

Bilinear interpolation

1
S gy Ty

(f(Qu)(z2—x)(y2 — y) + f(Qa)(x — 1) (y2 — ¥)

+ f(Qu2)(x2 — x)(y — 1) + f(Qa2)(x — 1) (y — 1))

(from wikipedia)

y2

yi

_____ ;,QI?___,___.',Bz_____,,___,.,+9€%

______ T ¥ o AU
11 R 5 21

beces ’_O_ , AJ ’I_Q_.
X1 X X2

Quantization

Quantize a pixel within [0, 1] using n bits
— round(p * (2*n-1)) / (2*n-1)

n=1 example

Random dithering

Before quantization:
- p=p + (random() - 0.5)/(2*n-1
— nis number of bits per channel

Reduce banding with intentional noise

n=1 example

Ordered dithering

Pseudo code for n-bit case: 15 7
1l=xmodm m =4, D= 3 11
J = y mod m 12 4
err = I(x, y) - floor quantize(I(x, vy))) | 0 8
threshold = (D(i,)+ 1) / (m™2 + 1)

if err > threshold

P(x, y) = ceil quantize(I(x, v)))
else

P(x, V)

floor quantize(I(x, vy)))

floor quantize (p)

= floor(p * (2°n-1)) / (2°n-1)
ceil quantize (p)
= ceil(p * (2"n-1)) / (2”n-1) n=1 example

Floyd-Steinberg error diffusion

Loop over pixels line by line
— Quantize pixel

Compute quantization error (the difference of the original pixel and the
quantized pixel)

Spread quantization error over four unseen neighboring pixels with
weights (see left figure below)
Results look more natural

column j

>~

row i

Bl
Bl =
31~

row j +1

