
COS 426: Computer Graphics (Spring 2021)

Slides from Reilly Bova, Joanna Kuo, Julian Knodt

Traditional Graphics Education and Industry Programming is in C++

• Pros of C++:
– Commonly used in industry for graphics programming

– Fast execution; systems access for optimization (memory, threads, etc.)

– Decades worth of libraries and support

• Cons of C++:

– Steeper learning curve than JS; need to worry about manual memory management

– Hard to debug and high debugging overhead with memory issues as well

– Not always portable, which makes both development and grading somewhat harder

– Difficult to share live C++ graphics demos, since users would need to download and compile

– Showing its age, and generally considered a messy/poorly designed language

Our Assignments are written in JavaScript (and GLSL):

• Pros of JS:

– High demand for JS development experience
– JS is more accessible and faster to debug and test
– JS/WebGL can use the GPU; powerful enough to run realistic 3D games at high FPS
– Excellent JS graphics libraries (e.g. ThreeJS) with modern support/documentation
– Extremely portable and easy to share by running directly in browsers
– Assignments will give students the tools they need to develop beautiful 3D art demos that they can drop right

into a personal website or publish to a github webpage.
● Cons of JS:

– Slower than C++, but not noticeably so within the use-cases of assignments
– Limited memory/threading, but these are not needed for assignments
– People potentially interested in entering the graphics industry will eventually need to learn C++; however,

they will likely take additional graphics courses such as COS 526 which covers C++.

https://www.benfrederickson.com/ranking-programming-languages-by-github-users/

TLDR:

• We want students to do as much as possible, as easily as possible, for as many people as

possible.

• Most 426 students will not continue into the graphics industry, but the skills they learn
in this class will still be extremely useful

– Mathematical concepts in graphics are broadly applicable across the sciences
– JS is common in both front-end & back-end development (ReactJS, Node.js)
– Final project is good way to practice building a large-scale project

• https://tympanus.net/Tutorials/TheAviator/
• https://paperplanes.world/
• https://www.foosballworldcup18.com/
• http://playdoh-lagaleriedesespeces.com/en/
• https://threejs.org/examples/?q=rea#webgl_postprocessing_unreal_bloom
• https://threejs.org/examples/?q=ocea#webgl_shaders_ocean
• https://phoboslab.org/xibalba/
• https://www.shadertoy.com/

• https://dreamworld-426.github.io/dreamworld/ <- S20 Final Project!
• https://oliverschwartz.github.io/going-viral/ <- S20 Final Project!
• https://beckybarber18.github.io/coloring/ <– S19 Final Project!

• https://collideoscope.github.io/ <- S19 Final Project!
• https://jbechara.github.io/Singularity/ <– A3 Art Project!

No downloading required! The 3D viewer loads right into your browser!

https://tympanus.net/Tutorials/TheAviator/
https://paperplanes.world/
https://www.foosballworldcup18.com/
http://playdoh-lagaleriedesespeces.com/en/
https://threejs.org/examples/?q=rea#webgl_postprocessing_unreal_bloom
https://threejs.org/examples/?q=ocea#webgl_shaders_ocean
https://phoboslab.org/xibalba/
https://www.shadertoy.com/
https://dreamworld-426.github.io/dreamworld/
https://oliverschwartz.github.io/going-viral/
https://beckybarber18.github.io/coloring/
https://collideoscope.github.io/
https://jbechara.github.io/Singularity/

Brief History
• JS started at Netscape in the 1990s. Back then it was just meant to be used for

quick-&-dirty web scripts. JS bears no relation to “Java”. That’s just marketing.
• Because of the informal use-case, JS is highly flexible — there are many ways

to accomplish the same thing.
• Over the past decade or so, JavaScript has exploded. Modern websites are

now written entirely in JavaScript (ex. React).
• The runtime has also improved to match its modern demands:

– Google’s V8 interpreter compiles JS to assembly during execution.
– Syntax has improved following the ES6 standards.

• JavaScript syntax is somewhere in between Java and Python. If you know one (or both)
of these languages, you should be in good shape.

• Like Python, JavaScript is a dynamically typed, interpreted language.

• Like Java, JavaScript requires brackets and variables must be declared (semicolons are
optional)

– Recommend installing the add-on Prettier, a code formatter, in your code editor to
keep your code nice and neat!

• “Try translating a Python script to Java, but then give up halfway through. That’s pretty
much JavaScript”

α + (1 – α) =

Variable Scope in JS
• The scope of a JavaScript variable depends on how it was declared
• There are three scopes: global, function, and block
• As of JS ES6 , there are three declaration keywords: var, const, and let
• A variable has global scope if it was declared as a var outside of any function:

var carName = "Volvo";

// code here can use carName

function myFunction() {
 // code here can also use carName
}

Variable Scope in JS
• The scope of a JavaScript variable depends on how it was declared
• There are three scopes: global, function, and block
• As of JS ES6 , there are three declaration keywords: var, const, and let
• A variable has global scope by default if it was declared without a keyword:

myFunction();

// code here can use carName

function myFunction() {
 carName = "Volvo";
}

Variable Scope in JS
• The scope of a JavaScript variable depends on how it was declared
• There are three scopes: global, function, and block
• As of JS ES6 , there are three declaration keywords: var, const, and let
• A variable has function scope (like Python variables) if it was declared as a var

inside a function:

// code here can NOT use carName

function myFunction() {
 var carName = "Volvo";
 // code here CAN use carName
}

Variable Scope in JS
• The scope of a JavaScript variable depends on how it was declared
• There are three scopes: global, function, and block
• As of JS ES6 , there are three declaration keywords: var, const, and let
• A variable has block scope (like Java variables) if it was declared as a let inside

a function:

var x = 10;
// Here x is 10
{
 let x = 2;
 // Here x is 2
}
// Here x is 10

Variable Scope in JS
• The scope of a JavaScript variable depends on how it was declared
• There are three scopes: global, function, and block
• As of JS ES6 , there are three declaration keywords: var, const, and let
• A variable has block scope (like Java variables) if it was declared with const

inside a scope. Note that const variables cannot be changed:

var x = 10;
// Here x is 10
{
 const x = 2;
 // Here x is 2
}
// Here x is 10

Variable Scope in JS
• In general, do not use var in your assignment code to avoid bugs! Instead use

let for mutable variables, and const for immutable variables
– Our assignment code is not great about this at the moment, but it will be

changing

function myFunction() {
for (var x = 0; x < 10; x++) {
 console.log(x);
 // prints 0, 1, ..., 9
}
console.log(x);
// prints “10” because x is still within function scope!

}

Data Types in JS
• JavaScript variables are dynamic; a variable that holds a number can be

redefined as a string, function, etc.
• There are seven main data types in JavaScript*:

– Numbers (there is no distinction between integers and floats)
– Strings (use ‘’ or “”; use `back tick` for multiline)
– Booleans: true/false
– Arrays: [1,2,3]
– Objects (including null)
– Functions
– Undefined

* https://medium.com/better-programming/everything-in-javascript-is-an-object-except-for-when-it-isnt-305bc65a3410

Arrays in JS
• Arrays in JavaScript work just like lists in Python
• You can append to arrays using the .push() function:

let arr = [];
for (let x = 0; x < 10; x++) {
 arr.push(x);
}
console.log(arr, arr[5]);
// prints: [0, 1, ..., 9] 5

let [x, y, ...rest] = arr; // destructuring an array
console.log(x, y, rest);
// prints: 0, 1, [2, … , 9]

• Further useful Array operations (like sorting, mapping, and iteration) can be
found here.

https://www.w3schools.com/js/js_arrays.asp

Functions in JS
• There are three main ways to declare functions in JavaScript
• Version 1:

function myFunction(a, b=“default value”) {
 return a + b;
}

• Version 2:
const x = function (a, b=“default value”) {return a + b};

• Version 3 (arrow function; good for one-liners):
const x = (a, b=“default value”) => {return a + b};
let x = (a, b) => a * b; // implicitly returns result in this form

Objects in JS
• Objects are declared similar to Python dictionaries / Java maps
• You can add and overwrite object properties as you go
• Objects can contain functions

let person = {firstName:"John", lastName:"Doe", age:50, eyeColor:"blue"}

let x = person;
x.age = 10; // This will change both x.age and person.age
x.hairColor = “black”; // This adds the property hairColor to x and person

const {firstName, lastName} = person; // destructuring an object
console.log(firstName, lastName);
// prints: John Doe

Classes in JS
• Classes can be defined as a function

function Person(firstName, lastName, age, eyeColor) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.age = age;
 this.eyeColor = eyeColor;
 this.changeName = function (name) {
 this.lastName = name;
 };
}

● The this keyword is not available in an arrow function

Instancing Objects in JS
• You can instance objects (as you would instance a class in Java) using the new

keyword. (no need to free later; JS has garbage collection)
• If you wish to add additional instance variables or methods outside of the

constructor, use Object.prototype

Person.prototype.name = function() {
 return this.firstName + " " + this.lastName;
};

let me = new Person(“Jane”, “Doe”, 20, “Brown”);
console.log(me.name())
// prints “Jane Doe”

Getting Started
1. Visit the assignment 0 page.

2. Download the zip file.

Starting the Server
1. Extract the files.

$ unzip cos426-Assignment-0.zip && cd cos426-Assignment-0

2. Start the server with any of the following commands:

$ python3 -m http.server
$ python -m SimpleHTTPServer
$ php -S localhost:8000

https://www.cs.princeton.edu/courses/archive/spring21/cos426/assignments/A0/
https://www.cs.princeton.edu/courses/archive/spring21/cos426/zips/COS-426-Assignment-0.zip

Who Are You?

1. Open “student.js”1 using your favorite editor. We recommend either:

– VSCode
– Atom

2. Edit ‘Student Name’ and ‘NetID’

3. Open the server and check that it worked! Visit2

http://localhost:8000

[1] Look in the directory named js
[2] We recommend Google Chrome for its developer tools, but Safari and Firefox are okay too.

“Implement” the Fill Tool

1. Now open “filters.js”

2. Uncomment the “setPixel” line

3. Verify that it works:

– Refresh http://localhost:8000

– Click the Fill button

– Disable cache by leaving the Developer Tools window open

– You may need to “Force Reload” (CMD+Shift+R)

http://localhost:8000

Debugging Tip
• Trace statements that print into the browser’s developer console

– E.g. “console.log(`Color is ${pixel.r} ${pixel.g} ${pixel.b}`);”

• Use the browser’s built-in debugger
– Just add the line “debugger;”

Final Note
• This assignment is designed to be an easy warm-up! It may take 15 min for

students familiar with JavaScript, and longer for those with no experience
– The idea here is to make sure everyone has some JS experience going into A1

– Please style and comment your code so that it is readable.

• The Art Project is optional, but most students submit something. Instructors
award bonus points to the top few submissions. We encourage:

– Visually pleasing submissions (“Look at my work of art!”)

– Intellectually stimulating submissions (“Look at this extra feature I made”!)

– Funny submissions (“Look at my buggy output!”)

• Have fun!

Learn JavaScript

● Mozilla JavaScript Guide

○ Mozilla is one of the developers of, and contributor to, many web standards

● Wikibooks JavaScript "Book"

○ structured as a book, but available completely online

○ great reference for quickly finding syntax

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://en.wikibooks.org/wiki/JavaScript

