Image Compositing \& Morphing

Felix Heide
COS 426, Spring 2021
Princeton University

Digital Image Processing

- Changing pixel values • Moving image locations
- Linear: scale, offset, etc.
- Nonlinear: gamma, saturation, etc.
- Histogram equalization
- Filtering over neighborhoods
- Blur \& sharpen
- Detect edges
- Median
- Bilateral filter
- Scale
- Rotate
- Warp
- Combining images
- Composite
- Morph
- Quantization
- Spatial / intensity tradeoff
- Dithering

Types of Transparency

- Refraction
- Light is bent as it goes through an object
- Can focus light: caustics
- Can be color-dependent: dispersion

Types of Transparency

- Refraction
- Subsurface scattering
- Translucent materials

- Light leaves at different position than it entered

Types of Transparency

- Refraction
- Subsurface scattering
- Today: compositing
- Separate image into layers with known order
- Pixelwise combination: each pixel in each layer
 can be transparent, opaque, or somewhere in between

Example

Jurassic Park (1993)

Image Composition

- Issues:
- Segmenting image into regions
- Blending into single image seamlessly

Image Composition

- Issues:
$>$ Segmenting image into regions
- Blending into single image seamlessly

Image Matting

- Chroma keying (blue- or green-screen)
- Photograph object in front of screen with known color

Image Matting

- Specify segmentation by hand
- Purely manual: draw matte every frame
- Semi-automatic: graph-cut (draw a few strokes) Separate image regions along minimal cuts (where edges measure differences between adjacent pixels)

Image Matting

- Novel methods, e.g. flash matting

Image Matting

- Portrait mode in Google Pixel Phone

Image Matting

- Portrait mode in Google Pixel Phone

Image Composition

- Issues:
- Segmenting image into regions
> Blending into single image seamlessly

Image Blending

- Ingredients
- Background image
- Foreground image with blue background
- Method
- Non-blue foreground pixels overwrite background

Blending with Alpha Channel

Per-pixel "alpha" channel: controls the linear interpolation between foreground and background pixels when elements are composited.

Alpha Channel

- Encodes pixel coverage information
- $\quad \alpha=0$: no coverage (or transparent)
- $\quad \alpha=1$: full coverage (or opaque)
- $0<\alpha<1$: partial coverage (or semi-transparent)
- Example: $\alpha=0.3$

Alpha Blending: "Over" Operator

$C=A$ over B
$C=\alpha_{A} A+\left(1-\alpha_{A}\right) B$

Compositing Algebra

- Suppose we put A over B over background G

- How much of B is blocked by A ?

$$
\alpha_{\mathrm{A}}
$$

- How much of B shows through A

$$
\left(1-\alpha_{A}\right)
$$

- How much of G shows through both A and B ?

$$
\left(1-\alpha_{A}\right)\left(1-\alpha_{B}\right)
$$

Compositing Algebra

- Suppose we put A over B over background G

- Final result?

$$
\begin{gathered}
\alpha_{A} A+\left(1-\alpha_{A}\right) \alpha_{B} B+\left(1-\alpha_{A}\right)\left(1-\alpha_{B}\right) G \\
=\alpha_{A} A+\left(1-\alpha_{A}\right)\left[\alpha_{B} B+\left(1-\alpha_{B}\right) G\right] \\
=A \text { over }[B \text { over } G]
\end{gathered}
$$

Must perform "over" back-to-front: right associative!

Other Compositing Operations

- How can we combine 2 partially covered pixels?
- 4 regions ($0, A, B, A B$)
- 3 possible colors (0, A, B)

Blending with Alpha

Composition algebra - 12 combinations

$$
C^{\prime}=F_{A} \alpha_{A} A+F_{B} \alpha_{B} B
$$

Operation	F_{A}	F_{B}
Clear	0	0
A	1	0
B	0	1
A over B	1	$1-\alpha_{A}$
B over A	$1-\alpha_{B}$	1
A in B	α_{B}	0
B in A	0	α_{A}
A out B	$1-\alpha_{B}$	0
B out A	0	$1-\alpha_{A}$
A atop B	α_{B}	$1-\alpha_{A}$
B atop A	$1-\alpha_{B}$	α_{A}
A xor B	$1-\alpha_{B}$	$1-\alpha_{A}$

clear

B in A

B out A

A

A out B

A atop B

B

B over A

B atop A

A over B

A xor b

Blending with Alpha

Composition algebra - 12 combinations

$$
C^{\prime}=F_{A} \alpha_{A} A+F_{B} \alpha_{B} B
$$

Operation	F_{A}	F_{B}
Clear	0	0
A	1	0
B	0	1
A over B	1	$1-\alpha_{A}$
B over A	$1-\alpha_{B}$	1
A in B	α_{B}	0
B in A	0	α_{A}
A out B	$1-\alpha_{B}$	0
B out A	0	$1-\alpha_{A}$
A atop B	α_{B}	$1-\alpha_{A}$
B atop A	$1-\alpha_{B}$	α_{A}
A x or B	$1-\alpha_{B}$	$1-\alpha_{A}$

Image Composition Example

Stars

Planet

Image Composition Example

BFire

FFire
[Porter\&Duff Computer Graphics 18:3 1984]

Image Composition Example

BFire out Planet

Composite
[Porter\&Duff Computer Graphics 18:3 1984]

COS426 Examples

Darin Sleiter

Poisson Image Blending

sources

destinations

cloning

seamless cloning

Poisson Image Blending

Beyond simple compositing

- Solve for image samples that follow gradients of source subject to boundary conditions imposed by dest

$$
\min _{f} \iint_{\Omega}|\nabla f-\mathbf{v}|^{2} \text { with }\left.f\right|_{\partial \Omega}=\left.f^{*}\right|_{\partial \Omega}
$$

Poisson Image Blending

source/destination

cloning

seamless cloning

Digital Image Processing

- Changing pixel values • Moving image locations
- Linear: scale, offset, etc.
- Nonlinear: gamma, saturation, etc.
- Histogram equalization
- Filtering over neighborhoods
- Blur \& sharpen
- Detect edges
- Median
- Bilateral filter
- Scale
- Rotate
- Warp
- Combining images
- Composite
- Morph
- Quantization
- Spatial / intensity tradeoff
- Dithering

Image Morphing

- Animate transition between two images

(a)

(b)

(C)

Figure 16-9
Transformation of an STP oil ca into an engine block. (Courtesy of Silicon Graphics, Inc.)

Cross-Dissolving

- Blend images with "over" operator
- alpha of bottom image is 1.0
- alpha of top image varies from 0.0 to 1.0
blend $(\mathrm{i}, \mathrm{j})=(1-\mathrm{t}) \operatorname{src}(\mathrm{i}, \mathrm{j})+\mathrm{tdst}(\mathrm{i}, \mathrm{j}) \quad(0 \leq t \leq 1)$

$\mathrm{t}=0.0$
$t=0.5$

Image Morphing

- Combines warping and cross-dissolving

Beier \& Neeley Example

Warp $_{0}$

Warp $_{1}$

Beier \& Neeley Example

Beier \& Neeley Example

Black or White, Michael Jackson (1991)

Warping Pixel Locations

The original basis

The warped basis

$$
\begin{gathered}
u=\frac{(\boldsymbol{X}-\boldsymbol{P}) \cdot(\boldsymbol{Q}-\boldsymbol{P})}{\|\boldsymbol{Q}-\boldsymbol{P}\|^{2}} \\
\boldsymbol{v}=\frac{(\boldsymbol{X}-\boldsymbol{P}) \cdot \text { Perpendicular }(\boldsymbol{Q}-\boldsymbol{P})}{\|\boldsymbol{Q}-\boldsymbol{P}\|} \\
\boldsymbol{X}^{\prime}=\boldsymbol{P}^{\prime}+\boldsymbol{u} \cdot\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)+\frac{\boldsymbol{v} \cdot \text { Perpendicular }\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)}{\left\|\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right\|}
\end{gathered}
$$

This generates one warp per line, each of which is a simple rotation and non-uniform scale (scaling is only done along the axis of the line). These warps must then be averaged to get the final warp. In the original paper, the weights for the average are tuned with the formula below. The dist variable is the distance of the point from the line segment, and the length variable is the length of the line segment.

$$
\text { weight }=\left(\frac{\text { length }^{p}}{a+\text { dist }^{b}}\right)^{b}
$$

The equations give several parameters to tune, and I got the best results when $a=0.001, b=2$, and $p=0$. Ignoring the length of the line segments (by setting p to zero) gave better results than when the length was taken in to account. I used seven contours with 28 line segments to represent the features of each face.

Warping Pseudocode

WarpImage(Image, $\left.L_{\text {src }}[\ldots], L_{\text {dst }}[\ldots]\right)$ begin
foreach destination pixel $\mathrm{p}_{\text {dst }}$ do psum $=(0,0)$ wsum = 0 foreach line $L_{\text {dst }}[i]$ do $p_{\text {src }}[i]=p_{\text {dst }}$ transformed by $\left(L_{\text {dst }}[i], L_{\text {src }}[i]\right)$ psum $=$ psum $+p_{\text {srcl }}[i]$ * weight[i] wsum += weight[i]
end
$\mathrm{p}_{\text {src }}=$ psum / wsum
$\operatorname{Result}\left(\mathrm{p}_{\text {dst }}\right)=\operatorname{Resample}\left(\mathrm{p}_{\text {src }}\right)$
end
end

Morphing Pseudocode

GenerateAnimation(Image ${ }_{0}, \mathrm{~L}_{0}[\ldots]$, Image $_{1}, \mathrm{~L}_{1}[\ldots]$) begin
foreach intermediate frame time t do for $i=1$ to number of line pairs do
$L[i]=$ line $t^{\text {th }}$ of the way from $L_{0}[i]$ to $L_{1}[i]$ end
Warp $_{0}=$ Warplmage $\left(\right.$ Image $\left._{0}, \mathrm{~L}_{0}, \mathrm{~L}\right)$ Warp $_{1}=$ WarpImage $\left(\right.$ Image $\left._{1}, \mathrm{~L}_{1}, \mathrm{~L}\right)$ foreach pixel p in Finallmage do Result(p) $=(1-t)$ Warp $_{0}+t$ Warp $_{1}$
end
end

COS426 Example

Amy Ousterhout

COS426 Examples

Sam Payne
Matt Matl

Image Composition Applications

- "Computational photography":
new photographic effects that inherently use multiple images + computation
- Example: stitching images into a panorama

Image Composition Applications

- Flash / No flash

Image Composition Applications

- Photo montage

[Michael Cohen]

Image Composition Applications

- Stoboscopic images

[Michael Cohen]

Image Composition Applications

- Extended depth-of-field

[Michael Cohen]

Scene Completion Using Millions of Photographs

James Hays and Alexei A. Efros

SIGGRAPH 2007

Slides by J. Hays and A. Efros

Hays et al. SIGGRAPH 07

Hays et al. SIGGRAPH 07

Hays et al. SIGGRAPH 07

Image Completion

Hays et al. SIGGRAPH 07

Image Completion

2.3 Million unique images from Flickr

Hays et al. SIGGRAPH 07

Scene Completion Result
Hays et al. SIGGRAPH 07

Image Completion Algorithm

Input image

Mosaicing

Image Collection

200 matches

Hays et al. SIGGRAPH 07

Hays et al. SIGGRAPH 07

Summary

- Image compositing
- Alpha channel
- Porter-Duff compositing algebra
- Image morphing
- Warping
- Compositing
- Computational photography

