
Passive Dynamics and

Particle Systems

COS 426, Spring 2021

Felix Heide

Princeton University

Animation & Simulation

• Animation
 Make objects change over time

according to scripted actions

• Simulation / dynamics
 Predict how objects change over time

according to physical laws

University of Illinois

Pixar

Animation & Simulation

Keyframing:

• Manually specify a few poses; computer interpolates.

• Good for characters and simple motion.

• But many physical systems are too complex!

Simulation

1. Identify/derive mathematical model (ODE, PDE)

2. Develop computer model

3. Simulate

Simulation

Equations known for a long time

- Motion

(Newton, 1660)

- Elasticity

(Hooke, 1670)

- Fluids

(Navier, Stokes, 1822)

1018

Simulation

Physically-based simulation

• Computational Sciences
 Reproduction of physical phenomena

 Predictive capability

 Substitute for expensive experiments

Simulation in Graphics

Physically-based simulation

• Computational Sciences
 Reproduction of physical phenomena

 Predictive capability

 Substitute for expensive experiments

• Computer Graphics
 Imitation of physical phenomena

 Visually plausible behavior

 Speed, stability, art-directability

Simulation: Speed

https://www.youtube.com/watch?v=8jD1bz4N3_0

https://www.youtube.com/watch?v=8jD1bz4N3_0

Simulation: Stability
https://www.youtube.com/watch?v=tT81VPk_ukU

https://www.youtube.com/watch?v=tT81VPk_ukU

Simulation: Art-directability

Simulation in Graphics

• Rigid bodies

• Collision

• Fracture

• Fluids

• Elasticity

• Muscle + skin

• Paper

• Hair

• Cloth

• etc…

Dynamics

Hodgins

Passive Dynamics

• No muscles or motors
 Smoke

 Water

 Cloth

 Fire

 Fireworks

 Dice

McAllister

Passive Dynamics

• Physical laws
 Newton’s laws

 Hooke’s law

 Etc.

• Physical phenomena
 Gravity

 Momentum

 Friction

 Collisions

 Elasticity

 Fracture

McAllister

Particle Systems

• A particle is a point mass
 Position

 Velocity

 Mass

 Drag

 Elasticity

 Lifetime

 Color

• Use many particles to model complex phenomena
 Keep array of particles

 Newton’s laws

p = (x,y,z)

v

Particle Systems

• For each frame:
 For each simulation step (Δt)

▪ Create new particles and assign attributes

▪ Update particles based on attributes and physics

▪ Delete any expired particles

 Render particles

Creating Particles

• Where to create particles?
 Predefined source

 Where particle density is low

 etc.

Reeves

Creating Particles

• Where to create particles?
 Predefined source

 Where particle density is low

 etc.

Reeves

Creating Particles

• Example: particles emanating from shape
 Line

 Box

 Circle

 Sphere

 Cylinder

 Cone

 Mesh
McAllister

Creating Particles

• Example: particles emanating from sphere

Selecting random position on surface of sphere

r

Rejection Sampling:

// pick random point in sphere

do {

x,y,z = random(-1,1)

rsq = x2+y2+z2

} while (rsq > 1)

// normalize length

r = sqrt(rsq)

x /= r

y /= r

z /= r

x,y,z

Creating Particles

• Example: particles emanating from sphere

Selecting random direction within angle cutoff of normal

Angle

cutoff

V

N

t1

t2
A

1. N = surface normal

2. A = any vector on tangent plane

3. t1 = random [0, 2π)

3. t2 = random [0, sin(angle cutoff))

4. V = rotate A around N by t1

5. V = rotate V around VxN by acos(t2)

acos(t2)

Example: Fountains

http://www.cs.princeton.edu/courses/archive/spring14/cos426/assignment4/examples/output/gravity.gif

Example: Emission from Surface

Jacob Zimmer, COS 426 2018

Particle Systems

• For each frame:
 For each simulation step (Δt)

▪ Create new particles and assign attributes

▪ Update particles based on attributes and physics

▪ Delete any expired particles

 Render particles

Equations of Motion

• Newton’s Law for a point mass
 f = ma

• Computing particle motion requires solving

second-order differential equation

• Add variable v to form coupled

first-order differential equations:

“state-space form”

Solving the Equations of Motion

• Initial value problem
 Know x(0), v(0)

 Can compute force (and therefore acceleration)

for any position / velocity / time

 Compute x(t) by forward integration

f
x(0)

x(t)

Hodgins

Solving the Equations of Motion

• Forward (explicit) Euler integration

Solving the Equations of Motion

• Forward (explicit) Euler integration
 x(t+Δt)  x(t) + Δt v(t)

 v(t+Δt)  v(t) + Δt f(x(t), v(t), t) / m

Teschner

Solving the Equations of Motion

• Forward (explicit) Euler integration
 x(t+Δt)  x(t) + Δt v(t)

 v(t+Δt)  v(t) + Δt f(x(t), v(t), t) / m

• Problem:
 Accuracy decreases as Δt gets bigger

Hodgins

Solving the Equations of Motion

• Midpoint method

1. Compute an Euler step

2. Evaluate f at the midpoint of Euler step

3. Compute new position / velocity using

midpoint velocity / acceleration

 xmid  x(t) + Δt / 2 * v(t)

 vmid  v(t) + Δt / 2 * f(x(t), v(t), t) / m
 x(t+Δt)  x(t) + Δt vmid

 v(t+Δt)  v(t) + Δt f(xmid, vmid, t) / m

Teschner

Solving the Equations of Motion

• Adaptive step size
 Repeat until error is below threshold

1. Compute xh by taking one step of size h

2. Compute xh/2 by taking 2 steps of size h / 2

3. Compute error = | xh - xh/2 |

4. If (error < threshold) break

5. Else, reduce step size and try again

error

xh

xh/2

Particle System Forces

• Force fields
 Gravity, wind, pressure

• Viscosity/damping
 Drag, friction

• Collisions
 Static objects in scene

 Other particles

• Attraction and repulsion
 Springs between neighboring particles (mesh)

 Gravitational pull, charge

Particle System Forces

• Gravity
 Force due to gravitational pull (of earth)

 g = acceleration due to gravity (m/s2)

mgfg = g = (0, -9.80665, 0)

Particle System Forces

• Drag
 Force due to resistance of medium

 kdrag = drag coefficient (kg/s)

 Air resistance taken as proportional to v2

vkf dragd −=

p

v

fd

2

Particle System Forces

• Sinks
 Force due to attractor in scene

p

fs

2

intensity

dqdl c
f

aaa

s
++

=

Sink
Closest point

on sink surface

d

Particle System Forces

• Gravitational pull of other particles
 Newton’s universal law of gravitation

p

fG

-22-11 kg m N 10 x 6.67428=G

d

2

21

d

m m
GfG


=

q

Particle System Forces

• Springs
 Hooke’s law

fH

()

tcoefficien spring

length resting

),(

/)(

),()(

=

=

−=

−−=

−=

s

sH

k

s

pqqpd

pqpqD

Dsqpdkpf

Particle System Forces

• Springs
 Hooke’s law with damping

() () 

q ofvelocity)(

p ofvelocity)(

tcoefficien damping

tcoefficien spring

length resting

),(

/)(

)()(),()(

=

=

=

=

=

−=

−−=

−+−=

qv

pv

k

k

s

pqqpd

pqpqD

DDpvqvksqpdkpf

d

s

dsH

fH

v(p)

v(q)

sd mkk 2~

Example: Rope

http://www.cs.princeton.edu/courses/archive/spring14/cos426/assignment4/examples/output/rope.gif

Particle System Forces

• Spring-mass mesh

Hodgins

Example: Cloth

http://www.cs.princeton.edu/courses/archive/spring14/cos426/assignment4/examples/output/cloth.gif

Particle System Forces

• Collisions
 Collision detection

 Collision response

Witkin

Particle System Forces

• Collision detection
 Intersect ray with scene

 Compute up to Δt away from time of time of first

collision, and then continue from there

Witkin

Collision Detection

Particle System Forces

• Collision response
 No friction: elastic collision

(for mtarget >> mparticle: specular reflection)

 Otherwise, total momentum conserved,

energy dissipated if inelastic

N

InOut

qq

mtarget

Particle System Forces

• Impulse driven
 Manipulation of velocities

 Fast, more difficult to compute

• Force driven
 Penetration induces forces

 Slow, easy to compute

• Position based

response
 Approximate,

non physical

 Lightweight

https://www.pixar.com/assets/pbm2001/pdf/slidesh.pdf

Example: Bouncing

Ning Jin

COS 426, 2013

http://www.cs.princeton.edu/courses/archive/spring14/cos426/assignment4/examples/output/climbing.gif

Particle Systems

• For each frame:
 For each simulation step (Δt)

▪ Create new particles and assign attributes

▪ Update particles based on attributes and physics

▪ Delete any expired particles

 Render particles

Deleting Particles

• When to delete particles?
 When life span expires

 When intersect predefined sink surface

 Where density is high

 Random

McAllister

Particle Systems

• For each frame:
 For each simulation step (Δt)

▪ Create new particles and assign attributes

▪ Update particles based on attributes and physics

▪ Delete any expired particles

 Render particles

Rendering Particles

• Rendering styles
➢Points

 Polygons

 Shapes

 Trails

 etc.

McAllister

Rendering Particles

• Rendering styles
 Points

➢Textured polygons: sprites

 Shapes

 Trails

 etc.

McAllister

Rendering Particles

• Rendering styles
 Points

 Polygons

➢Shapes

 Trails

 etc.

McAllister

Rendering Particles

• Rendering styles
 Points

 Polygons

 Shapes

➢Trails

 etc. McAllister

Putting it All Together

• Examples
 Smoke

 Water

 Cloth

 Fire

 Fireworks

 Dice

McAllister

Example: “Smoke”

Lentine

Example: Fire

Example: Cloth

Breen

Example: Cloth

Bender

Example: More Bouncing

Bender

Summary

• Particle systems
 Lots of particles

 Simple physics

• Interesting behaviors
 Smoke

 Cloth

• Solving motion equations
 For each step, first sum forces,

then update position and velocity

