
More on Transformations

COS 426, Spring 2021

Felix Heide

Princeton University

Agenda

Grab-bag of topics related to transformations:

• General rotations
 Euler angles

 Rodrigues’s rotation formula

• Maintaining camera transformations
 First-person

 Trackball

• How to transform normals

3D Coordinate Systems

• Right-handed vs. left-handed

x

y z

x

yz

3D Coordinate Systems

• Right-handed vs. left-handed

• Right-hand rule for rotations:

positive rotation = counterclockwise

rotation about axis

General Rotations

• Set of rotations in 3-D is 3-dimensional
 Rotation group SO(3)

 Non-commutative

 Corresponds to orthonormal 3×3 matrices with

determinant = +1

• Need 3 parameters to represent a general rotation

(Euler’s rotation theorem)

Euler Angles

• Specify rotation by giving angles of rotation about

3 coordinate axes

• 12 possible conventions for order of axes, but

one standard is Z-X-Z

Euler Angles

• Another popular convention: X-Y-Z

• Can be interpreted as yaw, pitch, roll of airplane

Rodrigues’s Formula

• Even more useful: rotate by an arbitrary angle

(1 number) about an arbitrary axis (3 numbers,

but only 2 degrees of freedom since unit-length)

x

y

z

a



Rodrigues’s Formula

• An arbitrary point p may be decomposed into its

components along and perpendicular to a

p = a (p  a) + [p – a (p  a)]

a

p

Rodrigues’s Formula

• Rotating component along a leaves it unchanged

• Rotating component perpendicular to a (call it p⊥)

moves it to p⊥cos  + (a × p⊥) sin 

p⊥

p⊥cos  + (a × p⊥) sin 

Rodrigues’ Formula

• Putting it all together:

Rp = a (p  a) + p⊥cos  + (a × p⊥) sin 

= aaTp + (p – aaTp) cos  + (a × p) sin 

• So: R = aaT + (I – aaT) cos  + [a]× sin 

where [a]× is the “cross product matrix”

Why?

















−

−

−

=

0

0

0

][

xy

xz

yz

aa

aa

aa

a

Olinde Rodrigues, "Des lois géometriques qui regissent les déplacements d' un systéme solide

dans l' espace, et de la variation des coordonnées provenant de ces déplacement considérées

indépendant des causes qui peuvent les produire", J. Math. Pures Appl. 5 (1840), 380–440.

Rotating One Direction into Another

• Given two directions d1, d2 (unit length), how to

find transformation that rotates d1 into d2?
 There are many such rotations!

 Choose rotation with minimum angle

• Axis = d1 × d2

• Angle = acos(d1  d2)

Agenda

Grab-bag of topics related to transformations:

• General rotations
 Euler angles

 Rodrigues’s rotation formula

• Maintaining camera transformations
 First-person

 Trackball

• How to transform normals

Camera Coordinates

Camera right vector

maps to X axis

Camera up vector

maps to Y axis

Camera back vector

maps to Z axis

(pointing out of page)

Canonical camera coordinate system
 Convention is right-handed (looking down –z axis)

 Convenient for projection, clipping, etc.

x

y

z

Viewing Transformation

• Mapping from world to camera coordinates
 Eye position maps to origin

 Right vector maps to +X axis

 Up vector maps to +Y axis

 Back vector maps to +Z axis

x

y

z

World

right
up

back

Camera

View
plane

Finding the viewing transformation

• We have the camera (in world coordinates)

• We want T taking objects from world to camera

• Trick: find T-1 taking objects in camera to world

wpTcp =

































=

















w
z
y
x

ponm
lkji
hgfe
dcba

w
z
y
x

'
'

'
'

cpTwp 1−=

?

Finding the Viewing Transformation

• Trick: map from camera coordinates to world
 Origin maps to eye position

 Z axis maps to Back vector

 Y axis maps to Up vector

 X axis maps to Right vector

• This matrix is T-1 so we invert it to get T … easy!





































=



















w

z

y

x

EBUR

EBUR

EBUR

EBUR

w

z

y

x

wwww

zzzz

yyyy

xxxx

'

'

'

'

Maintaining Viewing Transformation

For first-person camera control, need 2 operations:

• Turn: rotate(, 0,1,0) in local coordinates

• Advance: translate(0, 0, –v*t) in local coordinates

• Key: transformations act on local, not global coords

• To accomplish: right-multiply by translation, rotation

Mnew  MoldT–v*t,zR,y

Maintaining Viewing Transformation

Object manipulation: “trackball” or “arcball” interface

• Map mouse positions to surface of a sphere

• Compute rotation axis, angle

• Apply rotation to global coords: left-multiply

Mnew  R,a Mold

Mouse

click

Mouse

release

Agenda

Grab-bag of topics related to transformations:

• General rotations
 Euler angles

 Rodrigues’s rotation formula

• Maintaining camera transformations
 First-person

 Trackball

• How to transform normals

Transforming Normals

Normals do not transform the same way as points!
 Not affected by translation

 Not affected by shear perpendicular to the normal

Transforming Normals

• Key insight: normal remains perpendicular to

surface tangent

• Let t be a tangent vector and n be the normal

t  n = 0 or tTn = 0

• If matrix M represents an affine transformation,

it transforms t as

t → MLt

where ML is the linear part (upper-left 3×3) of M

Transforming Normals

• So, after transformation, want

(MLt)Tntransformed = 0

• But we know that

tTn = 0

tT I n = 0

tT ML
T(ML

T)-1 n = 0

(MLt)T(ML
T)-1n = 0

• So: ntransformed = (ML
T)-1n

Transforming Normals

• Conclusion: normals transformed by inverse

transpose of linear part of transformation

• Note that for rotations, inverse = transpose,

so inverse transpose = identity
 normals are just rotated

COS 426 Midterm exam

• This Thursday, March 11

• Using Gradescope over a 24h window.

• We’ll be offering a few question slots.

• Covers everything through week 5:

color, image processing, shape representations,

transformations (but not today’s lecture)
 Also responsible for material in required parts of

first two programming assignments

• Closed book, no electronics,

one page (double sided) of notes / formulas

